
9 6 I E E E S o f t w a r e J u l y / A u g u s t 1 9 9 8 Copyright © 1998 Steven C. McConnell. All Rights Reserved.

B e s t P r a c t i c e s

Steve McConnell

As an undergraduate computer science stu-
dent, I thought that the main reason to create
new routines, instead of leaving all the code in
one big routine, was to avoid duplicate code. This
is undoubtedly the most popular reason for cre-
ating a routine, and it’s a good one. Similar code
in two routines is a warning sign. David Parnas
says that if you use copy and paste while you’re
coding, you’re probably committing a design
error. Instead of copying code, move it into its
own routine. Future modifications will be easier
because you will need to modify the code in only
one location. The code will be more reliable be-
cause you will have only one place in which to be
sure that the code is correct.

That is one good reason to create a routine, but
it hardly makes a complete list.

WHY ELSE?
There are many additional reasons to create rou-

tines, and many of them are more important than
avoiding duplicate code.

Reducing complexity
The single most important reason to create a

routine is to reduce a program’s complexity. Create
a routine to hide information so that you won’t al-
ways need to think about it. Sure, you need to
think about it when you write the routine. But
after it’s written, you should be able to forget the
details and use the routine without any knowl-
edge of its internal workings. Other reasons to cre-
ate routines—minimizing code size, improving
maintainability, and improving correctness—are
good ones, but without the abstractive power of
routines, complex programs would be intellectu-
ally impossible to manage.

Limiting effects of changes
Isolate areas that are likely to change so that the

changes’effects are limited to a single routine or, at
most, a few routines. Create your designs so that
the areas most likely to change are the easiest to
change. Such areas include hardware dependen-
cies, input-output formats, complex data struc-
tures, and business rules.

Hiding sequences
Hide the order in which events happen to be

processed. If the program typically gets data from
the user, then gets auxiliary data from a file, neither
the routine that gets the user data nor the routine
that gets the file data should depend on the other
routine being performed first. Design the system so
that either could be performed first, then create a
routine to hide the information about which hap-
pens to be performed first.

Improving performance
Having code in one place, inside a single routine,

means that a single optimization benefits all the
code that calls that routine. It makes it practical to
recode the routine with a more efficient algorithm
or a faster, more difficult language, like assembler.

Hiding data structures
Hide data structure implementation details so

that most of the program doesn’t need to worry
about messy manipulation details, but can deal with
the data in terms of how it’s used in the problem
domain. Routines that hide implementation details
provide a valuable level of abstraction that reduce
a program’s complexity. They centralize data struc-
ture operations in one place and reduce the chance

Why You Should Use
Routines…Routinely

E
D

IT
O

R
:

St
ev

e
M

cC
o

n
n

el
l•

C
o

n
st

ru
x

So
ft

w
ar

e
 •

st
ev

em
cc

@
co

n
st

ru
x.

co
m

Continued on page 94

.

of errors in working with that data structure. They
make it possible to change the data structure with-
out changing most of the program.

When hiding a data structure, refer to it inde-
pendently of the media it’s stored on. If you have
an insurance rates table that’s so big it’s always
stored on disk, you might be tempted to refer to it
as a “rate file.”When you refer to it as a file, however,
you’re exposing more information about the data
than you need to. If you ever change the program
so that the table is in memory instead of on disk,
the code that refers to it as a file will be incorrect,
misleading, and confusing. Try instead to make ac-
cess routine names independent of how the data is
stored, and refer to the abstract data type: “insur-
ance rates table,” for instance.

Hiding global data
If you need to use global data, at least hide its

implementation details. Working with global data
through access routines provides several benefits.
You can change the structure of the data without
changing your program, and you can monitor ac-
cesses to the data. The discipline of using access
routines also encourages you to think clearly
about whether the data is really global; it might
be more accurate to treat it as local to a class, mod-
ule, or routine.

Promoting code reuse
Code put into modular routines can be reused in

other programs more easily than the same code
spread across a large routine.

Planning for a family of programs
If you expect a program to be modified, isolate

the parts you expect to change within their own
routines. You can then modify the routines without
affecting the rest of the program, or you can put the
changes into completely new routines instead. For
example, several years ago I managed a team that
created a family of programs used by our clients to
sell insurance. We had to tailor each program to
each specific client’s insurance rates, report format,
underwriting rules, and so on. But many parts of the
programs were similar: data input routines that took
in information about our clients’customers, routines
that stored and retrieved information in a customer
database, routines that computed total rates for a
group, and so on. The team modularized the pro-
gram so that each part that varied from client to

client was put into its own module. The initial pro-
gramming for the whole system took several
months, but after that was done, whenever we got
a new client we merely wrote a handful of new mod-
ules and dropped them into the rest of the code. A
few days’work, and voila! Custom software!

Improving readability
Putting a section of code into a well-named rou-

tine is one of the best ways to document its func-
tion. Instead of reading a series of statements like

if (Node <> NULL) then
while (Node.Next <> NULL) do

Node = Node.Next
wend
LeafName = Node.Name

else
LeafName = ‘‘

endif

you can read a statement like

LeafName = GetLeafName(Node)

The new routine is so short that all it needs for doc-
umentation is a good name. Using a function call
instead of eight lines of code makes the routine that
originally contained the code less complex and au-
tomatically documents it.

You can use the same technique to document
complicated Boolean tests. Move the code that per-
forms the test into its own function, out of the main
flow of the code, then choose an understandable
function name. Both the main flow of the code and
the Boolean test will be clearer.

Improving portability
Isolate use of nonportable operations to explic-

itly identify and isolate future portability work.
Nonportable operations include nonstandard lan-
guage features, hardware dependencies, operating
system dependencies, and so on.

Isolating use of nonstandard language
functions

Most languages contain handy, nonstandard ex-
tensions. Using them is a double-edged sword:
they’re useful, but they might not be available
when you move to different hardware, a new ven-
dor’s implementation of the same language, or
even a new version of the language from your cur-
rent vendor. If you use nonstandard extensions,

B e s t P r a c t i c e s

9 4 I E E E S o f t w a r e J u l y / A u g u s t 1 9 9 8

Continued from
page 96

.

One of our best clients told us that after they
undertook perfective maintenance, their average
defect repair cost dropped by at least 50 percent.
Well-structured and -documented code also makes
defect identification and isolation much quicker,
and reduces the likelihood of causing more defects
with the repair. This reflects the well-known main-
tenance truth that the most expensive part of de-
fect repair is finding the defect.

Maintenance Fact #4. If perfective maintenance had
been properly funded over the past 30 years, I esti-
mate that the costs of repairing three decades of ne-
glect could have been reduced by at least 50 percent.

PAYING THE PIPER

Maintenance support work’s low status, com-
bined with the lack of ongoing investment in pro-
duction system portfolio maintenance, has left many
organizations with a maintenance balloon payment
that’s swollen to hundreds of millions of dollars.

Engineering professionals from industries such
as manufacturing, power generation, and con-
struction are simply amazed at the attitude of soft-
ware organizations—and IT, specifically—toward in-
vesting in the people, money, and time needed to

properly maintain their expensive IT systems. What
we may find even more amazing is that, overall, IT
has managed to get away with it.

Yet, while many companies are literally throwing
as much money and resources as they can find at
the Y2K situation, we see no signs of any increased
debate about the role of support and maintenance
after the Year 2000.

We must begin to treat the maintenance and
support of our production system portfolio as a
primary executive and strategic issue. We must treat
the people who undertake this critical work as pro-
fessionals. We must build professional support
teams who are treated as “system surgeons”and not
as second-class citizens.

We’ve spent billions, so let’s learn from what
we’ve paid for so dearly. ❖

Rob Thomsett is the consulting director for the thomsett
company. He entered the computing field in 1968 and has
been consulting and educating in the area of project manage-
ment, teams, and quality since 1974. He is on the editorial
board of the Cutter IT Journal. His second book, Third Wave
Project Management: A Handbook for Managing the Complex
Information Systems for the 1990s, is published by Prentice Hall.
He can be reached at RobThomsett@compuserve.com;
http://www.ozemail.com.au/~thomsett.

J u l y / A u g u s t 1 9 9 8 I E E E S o f t w a r e 9 5

build routines of your own that act as gateways to
those extensions. Then you can replace the ven-
dor’s nonstandard routines with custom-written
routines of your own if needed.

Isolating complex operations
Complex operations include complicated algo-

rithms, communications protocols, tricky Boolean
tests, and operations on complex data—all of which
are prone to errors. When you detect an error, hav-
ing the code to which it applies contained within a
single routine makes the error easier to diagnose
and fix than if parts of the complex operation were
spread throughout the program.

THE GREATEST INVENTION IN
COMPUTER SCIENCE

Aside from the invention of the computer, the
routine is arguably the single greatest invention in
computer science. It makes programs easier to read
and understand. It makes them smaller; imagine
how much larger your code would be if you had to
repeat the code for every call to a routine. And it
makes them faster; imagine how much harder it
would be to make performance improvements in
similar code used in a dozen places. In large part,
the effective use of routines makes modern pro-
gramming possible. ❖

Continued from
page 93

M a n a g e r

.

