best practices

glm are

Prospecting for
progammer’s

gold.

Software practitioners are subjected to a barrage of |
advice about effective development practices. The search
for effective practices — programmers’ gold — can be
almost as chancey as the search for the precious yellow

metal itself. Some mediocre practices ave overbyped and
don’t pan out; many valuable practices ave buried |

under the hype heaped on other practices. This colurmn

aimis to sepavate the gold from the ore by providing a

practitioner’s appraisal of past and present development

practices. Future colummns will take up practitioner-ori- |

ented topics ranging from “Whatever bappened to

information biding?” to “The estimation story — :

defending unpopular estimates.”
Steve McConnell

I AM GOING TO ADMIT SOMETHING
that i dmitted in refereed software publi-
i ys: [like coding.

rarely

hvers and writers because of the mistaken

STEVE MCCONNELL, EDITOR

onstruction?

program, officially or otherwise.

The reduction in attention to code construc-
tion has been exacerbated by the treatment of cod-
ing as the dirtiest grunt work of development. An
entry-level programmer in a large organization is
typically assigned to code routines that have been
specified and designed by someone higher up on

the corporate ladder. After a few years, the pro-
Code is often the only
accurate description of
the software available,

1 so it is imperative that
] it be of the highest ;

) [say I enjoy low-level design,
ihe, and optimization. I do not
nstruction activities even a
, I often find them invigo-
-uction is an important |
re respect than it has

relopment and coding
he same. Over time, :
.in the development
4 the best minds in i
e analyzing and i
project manage-
n, and quality i
‘newer areas has
ected stepchild of i

on has also been neglected by :

idea that, compared to other development activi- |

ties, construction is a relatively mechanical process |

and presents little opportunity for improvement.

Nothing could be further from the truth.

Editor:

Steve McConnell
Phantom Lake Engineering
PO Box 6922

Bellevue, WA 98008
smcconn@aol.com

system decomposition, intentionally leaving
design work for construction. Even program
designs that are supposed to be detailed enough to
provide for fairly mechanical coding will always

128

have gaps — the coder usually designs part of the :

Construction is not at all mechanical. Sometimes a
formal architecture addresses only the top level of

0T40-7458/96/%$05.00 @ 1995 |EEE

1 possible quality

I’'m not embarrassed. I don't :

grammer is promoted to architecture, require-
ments analysis, or project management. A few
years after that, the former programmer may pro-
claim with pride that it has been years since he or
she has written any code.

CENTRAL ROLE. The irony in this shift in focus is
that construction is the only development activity
that is guaranteed to be done. Right or wrong, you
could assume requirements rather than analyzing
them, you can shortchange architecture design,
and you can abbreviate or skip system testing. But
no matter how rushed or poorly planned your
project is, you cannot skip construction. If there’s
going to be a program, there must be construc-
ton.

Because construction is the only activity that
must be done, code is often the only accurate
description of the software available, which makes
it imperative that the source code be of the high-
est possible quality. Consistent application of
detailed source-code techniques distinguishes a
Rube Goldberg contraption from a polished, cor-
rect, and informative program. Such detailed tech-
niques must be applied as the code is constructed
— it is virtually impossible to retrofit the thou-
sands of picky details that spell the difference
between a maintainable program and a failure.

Continied on page 127

JANUARY 1996

‘

best practices

Continued from page 128

Even when a program is developed
using effective practices, construction
typically makes up about 80 percent of
the effort on small projects and 50 per-
cent on medium projects. And, although
the figures cited vary considerably, con-
struction accounts for about 75 percent
of the errors on small projects and 50 to
75 percent on medium and large projects.
(This data is approximate for detailed
design, coding, unit testing, and debug-
ging. See, for example, Programming
Productivity by Capers Jones, McGraw-
Hill, 1986.)

Any activity that accounts for 50 to 795
percent of errors presents a clear oppor-
tunity for improvement.

Some commentators have suggested
that, although construction errors

account for a high percentage of total
errors, these errors tend to be less expen-
sive to fix than errors created during
analysis and design. The implication is
that construction errors are therefore less
Important.

Although it may be true that construc-
tion errors cost less to fix, this is mislead-
ing because the cost of not fixing them
can be incredibly expensive. Gerald
Weinberg reported 10 years ago that the
three most expensive programming
errors — each of which costs hundreds of
millions of dollars — were one-line, cod-
ing-level mistakes (“Kill that Code!”
Infosysterns, Aug. 1983).

Little has changed since this report, as
a perusal of any recent “Risks to the
Public” section of Software Engincering
Notes shows. Errors in single lines might
be less expensive to fix than errors in
analysis or design, but obviously this does
not imply that detecting and correcting
them should be a low priority.

OPPORTUNITY KNOCKS. What does
this have to do with best practices?

Construction presents an unusually
good opportunity to disseminate infor-
mation about best practices in software
engineering. Millions of programmers
already doing construction can do it bet-
ter. People without formal training have
taught themselves to program in Pascal,
Basic, C, and C++. Learning about better
software construction allows these people

{EEE SOFTWARE

{ to build on what they already know and
i gives them a foot in the door to other
i powerful development practices.

In 1990, the Computer Science and

Technology Board stated that the biggest
{ gains in software-development quality
¢ and productivity will come from codify-
i ing, unifying, and distributing existing
knowledge about effective software-
{ development practices (“Scaling Up: A

i Research

Agenda for Software

i Engineering,” Communications of the
i ACM, March 1990). The board conclud-

ed that software-engineering handbooks
should play a key role in disseminating
that knowledge.

presents a good
opportunity to

disseminate
information about
best practices.

We have accumulated a2 mountain of

i research about construction over the
i years. It seems possible to codify the

knowledge of what makes for effective

i construction. I took a step toward that
i end by writing Code Complete, a practi-

i tioner-oriented handbook of construction
i practices (Microsoft Press, 1993). But
: much work remains if we are to identify,

i validate, and document effective con-
| struction practices.

i young, hotshot PC developers are mak-

i and learned to avoid 10 or 20 years ago.
i It is also clear from much of what has

RETRAINING GURUS. It is clear from

what T have seen on live projects that

ing the same mistakes their elders made

been written that the gray-haired soft-

{ ware-engineering experts could learn

{ some things from the young hotshots

i (after all, there are reasons why they’re
i hotshots).

School districts put administrators

{ back into the classrooms occasionally,

i and service companies put top executives
i back on customer-service duty. I have a

i dream in which prominent software-

engineering experts sign up for construc-
tion roles on projects at modern compa-
nies like Microsoft, Borland, and Novell.
During the last 10 years, an unbelievable
amount has changed in the way that pro-
duction software is developed, and a lot
of those differences must be experienced
on a live project to be appreciated.
Maybe this dream can never be realized
because it calls for too much individual
financial sacrifice. Maybe it would seem
like too much of a step backward for a
software-engineering guru to take a con-
struction job. But the industrywide bene-
fit would be amazing. The insights that
some of the wisest and brightest people
in our field would gain from being back
on the front lines of construction for

awhile could invigorate the whole indus-
try.

Publications like this one can help,
too. Some professional journals still pub-
lish code listings that have such poor lay-
out, variable names, and commenting
that they are virtually impossible to read.
The code listings contain fundamental

programming blunders such as using
numeric literals racher than named con-
stants. If these code listings were created
in a production environment, the devel-
oper who wrote the code would be sched-
uled for remedial training. Professional
journals whose code will be read by thou-
sands should take a leadership role in
publishing examples of good construc-
tion.

Researchers, consultants, and writers
who dismiss construction as a trivial
activity need to realize that construction,
i by definition, occupies the central role in
software development. It is where the
rubber meets the road, and that makes it
a uniquely productive area in which to
focus our attention.

Construction is important and will
remain so for the foreseeable future. The
difference between good and bad con-
struction can mean the difference
between project success and failure. The
difference between recognizing the key
role that construction plays in software
development and ignoring it can mean
the difference between moving the indus-
try forward and repeating the same old
i mistakes yet another time.

