
C o p y r i g h t © 2 0 0 2 S t e v e n C . M c C o n n e l l . A l l R i g h t s R e s e r v e d . J a n u a r y / F e b r u a r y 2 0 0 2 I E E E S O F T W A R E 3

from the editor
E d i t o r i n C h i e f : S t e v e M c C o n n e l l � C o n s t r u x S o f t w a r e � s o f t w a r e @ c o n s t r u x . c o m

Y
ears ago, Fred Brooks commented,
“The gap between the best software en-
gineering practice and the average prac-
tice is very wide�perhaps wider than
in any other engineering discipline.”
The past few years have seen a prolifer-

ation of books on project manage-
ment, requirements, architecture,
design, testing�nearly every area of
software engineering. But within the
companies I visit in my consulting
business, I rarely see software engi-
neering best practices being used. In-
creasingly, I ask myself, “Why aren’t
people using the numerous good
software engineering practices that
are now so readily available?”

Classic barriers to innovation
A conventional answer to this question is

that many of these practices simply aren’t
yet mature. When presented with a new
practice, software practitioners tend to ask
tough questions such as these:1

� Do experimental results prove conclu-
sively that the practice will work in the
field?

� Are successes a result of the practice it-
self, or might they be the result of the
people using it?

� Is the practice complete, or does it need
to be adapted or extended before it can
be applied?

� Does the practice have significant over-
head (training, documentation) that off-
sets its value in the long run?

� If the practice was developed in a re-
search setting, does it apply to real-

world problems?
� Does the practice generally slow down

the programmers?
� Can the practice be misapplied?
� Is information available about the risks

involved with using the practice?
� Does the practice include information

about how to integrate it with existing
practices?

� Must the practice be applied in its en-
tirety to realize significant benefits?

These are all fair questions, and I think
it’s healthy for practitioners to ask them. In-
deed, part of IEEE Software’s mission is to
help our readers answer these questions.
However, the practices I’m thinking of are
hardly new, and, for many of them, I believe
many of these questions have already been
answered. Table 1 lists numerous practices
that leading organizations have understood
well and deployed for decades.

In the management arena, we’ve had au-
tomated estimation tools since the early
1970s, but most projects don’t use them.
Measurement has been a key topic for 25
years, but few organizations collect quanti-
tative data on their projects. I still see soft-
ware developers housed in open work bays
or cubicles far more often than I see them
working in private or semiprivate offices—
even though research about the effect of
physical environment on productivity has
been conclusive for more than 15 years.

One of the most fundamental practices in
software engineering is change control, espe-
cially as it relates to software requirements. I
teach a two-day workshop based on my book
Software Project Survival Guide (Microsoft

Closing the Gap
Steve McConnell

Press, 1998). When I originally devel-
oped the workshop, I included a mod-
ule on change control, because I could
easily pull together the necessary mate-
rials and I was working under some
deadline pressure. I assumed that it
would be too basic for most of my stu-
dents and that I would need to replace
that module as soon as I had time. To
my surprise, three years later, after
teaching the class about 20 times, I’ve
had only one group of students in
which more than half were already us-
ing change control. Change control
has been described in the software en-
gineering literature since 1978, but the
basic practice has been employed in
other branches of engineering for at
least 50 years. All the tough questions
listed earlier were answered for change
control decades ago. Considering the

practice’s central role in software pro-
ject control, I am puzzled about why
software projects don’t use this funda-
mental practice universally.

Barriers to software
innovations

Software presents unique chal-
lenges to adopting better practices.
One challenge is a lack of awareness
that good practices exist. Where, ide-
ally, should someone learn about fun-
damental software engineering prac-
tices? In most fields, we expect
universities to provide education in the
fundamentals. Until very recently,
however, most undergraduate degree
programs related to computer pro-
gramming have not including training
in these basic practices. Additional
university programs are coming online

4 I E E E S O F T W A R E J a n u a r y / F e b r u a r y 2 0 0 2

FROM THE EDITOR

DEPARTMENT EDITORS

Bookshelf: Warren Keuffel,
wkeuffel@computer.org

Construction: Andy Hunt and Dave Thomas,
Pragmatic Programmers,

{Andy, Dave}@pragmaticprogrammer.com

Country Report: Deependra Moitra, Lucent Technologies
d.moitra@computer.org

Design: Martin Fowler, ThoughtWorks,
fowler@acm.org

Loyal Opposition: Robert Glass, Computing Trends,
rglass@indiana.edu

Manager: Don Reifer, Reifer Consultants,
dreifer@sprintmail.com

Quality Time: Jeffrey Voas, Cigital,
voas@cigital.com

STAFF

Senior Lead Editor
Dale C. Strok

dstrok@computer.org

Group Managing Editor
Crystal Chweh

Associate Editors
Jenny Ferrero and

Dennis Taylor

Staff Editors
Shani Murray, Scott L. Andresen,

and Kathy Clark-Fisher

Magazine Assistants
Dawn Craig

software@computer.org

Pauline Hosillos

Art Director
Toni Van Buskirk

Cover Illustration
Dirk Hagner

Technical Illustrator
Alex Torres

Production Artist
Carmen Flores-Garvey

Executive Director
David Hennage

Publisher
Angela Burgess

Assistant Publisher
Dick Price

Membership/Circulation
Marketing Manager
Georgann Carter

Advertising Assistant
Debbie Sims

CONTRIBUTING EDITORS

Greg Goth, Denise Hurst, Gil Shif, Keri Schreiner,
and Margaret Weatherford

Editorial: All submissions are subject to editing for clarity,
style, and space. Unless otherwise stated, bylined articles
and departments, as well as product and service descrip-
tions, reflect the author’s or firm’s opinion. Inclusion in
IEEE Software does not necessarily constitute endorsement
by the IEEE or the IEEE Computer Society.

To Submit: Send 2 electronic versions (1 word-processed
and 1 postscript or PDF) of articles to Magazine Assistant,
IEEE Software, 10662 Los Vaqueros Circle, PO Box 3014,
Los Alamitos, CA 90720-1314; software@computer.org. Ar-
ticles must be original and not exceed 5,400 words including
figures and tables, which count for 200 words each.

Table 1
Year of introduction of rarely used

software best practices
Best practice Year first described in print or first

available commercially
Project planning and management practices
Automated estimation tools 1973
Evolutionary delivery 1988
Measurement 1977
Productivity environments 1984
Risk management planning 1981

Requirements engineering practices
Change board 1978
Throwaway user interface prototyping 1975
Joint Application Design 1985

Design practices
Information hiding 1972
Design for change 1979

Construction practices
Source code control 1980
Incremental integration 1979

Quality assurance practices
Branch-coverage testing 1979
Inspections 1976

Process improvement

Software Engineering Institute’s
Software Capability Maturity Model 1987

Software Engineering Process Groups 1989

J a n u a r y / F e b r u a r y 2 0 0 2 I E E E S O F T W A R E 5

FROM THE EDITOR

each year, and I think the lack of in-
frastructure is due simply to software
engineering’s being such a young field.

In the absence of university educa-
tion systems, we might expect soft-
ware-producing companies them-
selves to provide supplemental
training. In fact, a few leading com-
panies do train their software engi-
neers, but not to an extent great
enough to ameliorate industry-wide
software problems.

In less advanced companies, the
lack of training has been more diffi-
cult to address. Before a manager can
prescribe training, he needs to know
that a field of knowledge is deep
enough to need training. Managers
who came up through the technical
ranks 20 years ago, or even 10 years
ago, might underestimate the depth of
knowledge in modern software engi-
neering. Many software managers are
not themselves well trained enough to
realize that their staff needs training.

Calling all experts
These are all descriptions of what

has not been done, but they still leave

open a basic question: Why don’t
software engineers�who are some of
the brighter people on the planet�
seek out better methods of doing
their work? We’re all aware of the
pain arising from not using these
practices. So why don’t practitioners
more actively seek them out and use
them?

With all the advances during the
past several years, it appears that the
challenge for the software industry
has shifted from good-practice devel-
opment to good-practice deployment.

W hat do you see as the barriers to
deployment of good practices?
How do you think good prac-

tices can be deployed more quickly? I
invite your comments.

Reference
1. S.A. Raghavan and D.R. Chand, “Diffusing

Software-Engineering Methods,” IEEE Soft-
ware, vol. 6, no. 4, July 1989, pp. 81–90.

EDITOR IN CHIEF:
Steve McConnell

10662 Los Vaqueros Circle
Los Alamitos, CA 90720-1314

software@construx.com

EDITOR IN CHIEF EMERITUS:
Alan M. Davis, Omni-Vista

ASSOCIATE EDITORS IN CHIEF

Design: Maarten Boasson, Quaerendo Invenietis
boasson@quaerendo.com

Construction: Terry Bollinger, Mitre Corp.
terry@mitre.org

Requirements: Christof Ebert, Alcatel Telecom
christof.ebert@alcatel.be

Management: Ann Miller, University of Missouri, Rolla
millera@ece.umr.edu

Quality: Jeffrey Voas, Cigital
voas@cigital.com

Experience Reports: Wolfgang Strigel,
Software Productivity Center; strigel@spc.ca

EDITORIAL BOARD

Don Bagert, Texas Tech University
Richard Fairley, Oregon Graduate Institute

Martin Fowler, ThoughtWorks
Robert Glass, Computing Trends

Andy Hunt, Pragmatic Programmers
Warren Keuffel, independent consultant
Brian Lawrence, Coyote Valley Software

Karen Mackey, Cisco Systems
Deependra Moitra, Lucent Technologies, India

Don Reifer, Reifer Consultants
Suzanne Robertson, Atlantic Systems Guild

Dave Thomas, Pragmatic Programmers
Karl Wiegers, Process Impact

INDUSTRY ADVISORY BOARD

Robert Cochran, Catalyst Software (chair)
Annie Kuntzmann-Combelles, Q-Labs

Enrique Draier, PSINet
Eric Horvitz, Microsoft Research

David Hsiao, Cisco Systems
Takaya Ishida, Mitsubishi Electric Corp.

Dehua Ju, ASTI Shanghai
Donna Kasperson, Science Applications International

Pavle Knaflic, Hermes SoftLab
Günter Koch, Austrian Research Centers

Wojtek Kozaczynski, Rational Software Corp.
Tomoo Matsubara, Matsubara Consulting

Masao Matsumoto, Univ. of Tsukuba
Dorothy McKinney, Lockheed Martin Space Systems

Nancy Mead, Software Engineering Institute
Stephen Mellor, Project Technology

Susan Mickel, AgileTV
Dave Moore, Vulcan Northwest

Melissa Murphy, Sandia National Laboratories
Kiyoh Nakamura, Fujitsu

Grant Rule, Software Measurement Services
Girish Seshagiri, Advanced Information Services

Chandra Shekaran, Microsoft
Martyn Thomas, Praxis

Rob Thomsett, The Thomsett Company
John Vu, The Boeing Company

Simon Wright, Integrated Chipware
Tsuneo Yamaura, Hitachi Software Engineering

MAGAZINE OPERATIONS COMMITTEE

George Cybenko (chair), James H. Aylor, Thomas J.
Bergin, Frank Ferrante, Forouzan Golshani, Rajesh
Gupta, Steve McConnell, Ken Sakamura, M. Satya-

narayanan, Nigel Shadbolt, Munindar P. Singh,
Francis Sullivan, James J. Thomas

PUBLICATIONS BOARD

Rangachar Kasturi (chair), Mark Christensen,
George Cybenko, Gabriella Sannitti di Baja, Lee

Giles, Thomas Keefe, Dick Kemmerer,
Anand Tripathi

Andy Hunt and Dave Thomas Join IEEE Software Editorial Board
Andy Hunt and Dave Thomas, founders of The Pragmatic Programmers LLC,

recently joined IEEE Software’s Editorial Board.
Prior to joining Pragmatic Programmers, Hunt worked in various senior posi-

tions at Discreet Logic, Alias Research, Philips Medical Systems, and AT&T. He re-
ceived his BS in information and computer science at the Geor-
gia Institute of Technology. He is a member of the IEEE
Computer Society, the ACM, and Independent Computer Con-
sultants Association.

Thomas cofounded and ran a software company in the
United Kingdom prior to joining Pragmatic Programmers.
Thomas holds an honor degree in computer science from Lon-
don University. He is a member of the IEEE Computer Society
and the ACM.

Hunt and Thomas have coauthored two books, The Prag-
matic Programmer: From Journeyman to Master (Addison-
Wesley, 2000), and Programming Ruby: The Pragmatic Pro-
grammer’s Guide (Addison-Wesley, 2001). They have also writ-
ten a number of articles together, including “Learning to Love
Unit Testing” for Software Testing and Quality Engineering
Magazine (Jan. 2002) and “Programming in Ruby” for Dr.

Dobb’s Journal (Jan. 2001). Individually and together, they have also given nu-
merous talks and tutorials at conferences and workshops.

Contact Andy Hunt at andy@pragmaticprogrammer.com and Dave Thomas at
dave@pragmaticprogrammer.com; www.pragmaticprogrammer.com.

Andy Hunt

Dave Thomas

