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Y
ears ago, Fred Brooks commented,
“The gap between the best software en-
gineering practice and the average prac-
tice is very wide�perhaps wider than
in any other engineering discipline.”
The past few years have seen a prolifer-

ation of books on project manage-
ment, requirements, architecture,
design, testing�nearly every area of
software engineering. But within the
companies I visit in my consulting
business, I rarely see software engi-
neering best practices being used. In-
creasingly, I ask myself, “Why aren’t
people using the numerous good
software engineering practices that
are now so readily available?”

Classic barriers to innovation
A conventional answer to this question is

that many of these practices simply aren’t
yet mature. When presented with a new
practice, software practitioners tend to ask
tough questions such as these:1

� Do experimental results prove conclu-
sively that the practice will work in the
field? 

� Are successes a result of the practice it-
self, or might they be the result of the
people using it? 

� Is the practice complete, or does it need
to be adapted or extended before it can
be applied?

� Does the practice have significant over-
head (training, documentation) that off-
sets its value in the long run?

� If the practice was developed in a re-
search setting, does it apply to real-

world problems?
� Does the practice generally slow down

the programmers?
� Can the practice be misapplied?
� Is information available about the risks

involved with using the practice? 
� Does the practice include information

about how to integrate it with existing
practices?

� Must the practice be applied in its en-
tirety to realize significant benefits? 

These are all fair questions, and I think
it’s healthy for practitioners to ask them. In-
deed, part of IEEE Software’s mission is to
help our readers answer these questions.
However, the practices I’m thinking of are
hardly new, and, for many of them, I believe
many of these questions have already been
answered. Table 1 lists numerous practices
that leading organizations have understood
well and deployed for decades. 

In the management arena, we’ve had au-
tomated estimation tools since the early
1970s, but most projects don’t use them.
Measurement has been a key topic for 25
years, but few organizations collect quanti-
tative data on their projects. I still see soft-
ware developers housed in open work bays
or cubicles far more often than I see them
working in private or semiprivate offices—
even though research about the effect of
physical environment on productivity has
been conclusive for more than 15 years.

One of the most fundamental practices in
software engineering is change control, espe-
cially as it relates to software requirements. I
teach a two-day workshop based on my book
Software Project Survival Guide (Microsoft
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Press, 1998). When I originally devel-
oped the workshop, I included a mod-
ule on change control, because I could
easily pull together the necessary mate-
rials and I was working under some
deadline pressure. I assumed that it
would be too basic for most of my stu-
dents and that I would need to replace
that module as soon as I had time. To
my surprise, three years later, after
teaching the class about 20 times, I’ve
had only one group of students in
which more than half were already us-
ing change control. Change control
has been described in the software en-
gineering literature since 1978, but the
basic practice has been employed in
other branches of engineering for at
least 50 years. All the tough questions
listed earlier were answered for change
control decades ago. Considering the

practice’s central role in software pro-
ject control, I am puzzled about why
software projects don’t use this funda-
mental practice universally. 

Barriers to software
innovations

Software presents unique chal-
lenges to adopting better practices.
One challenge is a lack of awareness
that good practices exist. Where, ide-
ally, should someone learn about fun-
damental software engineering prac-
tices? In most fields, we expect
universities to provide education in the
fundamentals. Until very recently,
however, most undergraduate degree
programs related to computer pro-
gramming have not including training
in these basic practices. Additional
university programs are coming online
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Table 1
Year of introduction of rarely used 

software best practices
Best practice Year first described in print or first 

available commercially 
Project planning and management practices
Automated estimation tools 1973
Evolutionary delivery 1988
Measurement 1977
Productivity environments 1984
Risk management planning 1981

Requirements engineering practices 
Change board 1978
Throwaway user interface prototyping 1975
Joint Application Design 1985

Design practices
Information hiding 1972
Design for change 1979

Construction practices
Source code control 1980
Incremental integration 1979

Quality assurance practices
Branch-coverage testing 1979
Inspections 1976

Process improvement

Software Engineering Institute’s 
Software Capability Maturity Model 1987

Software Engineering Process Groups 1989
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each year, and I think the lack of in-
frastructure is due simply to software
engineering’s being such a young field.

In the absence of university educa-
tion systems, we might expect soft-
ware-producing companies them-
selves to provide supplemental
training. In fact, a few leading com-
panies do train their software engi-
neers, but not to an extent great
enough to ameliorate industry-wide
software problems.

In less advanced companies, the
lack of training has been more diffi-
cult to address. Before a manager can
prescribe training, he needs to know
that a field of knowledge is deep
enough to need training. Managers
who came up through the technical
ranks 20 years ago, or even 10 years
ago, might underestimate the depth of
knowledge in modern software engi-
neering. Many software managers are
not themselves well trained enough to
realize that their staff needs training. 

Calling all experts
These are all descriptions of what

has not been done, but they still leave

open a basic question: Why don’t
software engineers�who are some of
the brighter people on the planet�
seek out better methods of doing
their work? We’re all aware of the
pain arising from not using these
practices. So why don’t practitioners
more actively seek them out and use
them? 

With all the advances during the
past several years, it appears that the
challenge for the software industry
has shifted from good-practice devel-
opment to good-practice deployment. 

W hat do you see as the barriers to
deployment of good practices?
How do you think good prac-

tices can be deployed more quickly? I
invite your comments.
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