
C o p y r i g h t © 2 0 0 1 S t e v e n C . M c C o n n e l l . A l l R i g h t s R e s e r v e d . J a n u a r y / F e b r u a r y 2 0 0 1 I E E E S O F T W A R E 5

from the editor
E d i t o r i n C h i e f : S t e v e M c C o n n e l l ■ C o n s t r u x S o f t w a r e ■ s t e v e m c c @ c o n s t r u x . c o m

T
he traditional distinction between soft-
ware and hardware was that software
was easily changeable and therefore
“soft,” whereas hardware was captured
on a physical medium like a chip, was
hard to change, and was therefore

“hard.” This traditional distinction is break-
ing down today. Software delivered via the In-
ternet is clearly “soft” in the traditional sense,

but software delivered via CD or
DVD is hardly “soft” in the sense
of being “easy to change.”

We now commonly see soft-
ware being delivered on EPROMs;
the electronic control module that
controls my car’s fuel injection is
an example. I can take my car to
my dealer to have the chip repro-
grammed, so in some sense the
program on the chip is soft, but is
it software? Should the chip devel-

opers be using software engineering?
Computer chip designers are now doing

much of their chip development using soft-
ware-engineering-like tools. Only at the last
minute is the code committed to silicon. Do
we really think that committing code to a
CD-ROM makes it software but committing
it to a silicon wafer makes it hardware?
Have we arrived at a point where even com-
puter hardware is really software?

If software and hardware are totally dif-
ferent, then electrical engineers designing
computer chips don’t need to know about
software engineering. But if modern chip de-
sign involves a significant amount of pro-
gramming, then perhaps electrical engineers
should know something about software en-

gineering. Should computer hardware be de-
signed using software engineering?

Throw a few other disciplines into the
mix such as Web programming and games
development, and I think a fundamental
question lurks here: What is software? This
question is important because it leads to a
second question: What is software engineer-
ing today, and who needs it? I recently posed
these questions to several IEEE Software
board members.

Blurred distinctions
Wolfgang Strigel: No doubt, the distinc-

tion between software and hardware has
blurred. When the term software was
coined, there was a clearer distinction, or
nobody cared because it sounded good and
made intuitive sense. Moreover, it is not im-
portant that software is modifiable (or
“soft” once it is completed). Software does
not change its nature by being turned into
something “hard” or unmodifiable. After
all, we have accepted the concept of selling
software on CDs. And RAM can also be
write-protected. What matters is whether
there is a “program” that can be executed
by a device.

The project plan for building a high-rise
is a set of complex instructions, decision
points, and so on that could be interpreted
as a software program. But it is not executed
by a device. But how about multimedia, say
an animated movie? It has instructions for
movement, rendering, and so on, and is ex-
ecuted by a device. It can also be modified.
How about a set of MIDI instructions that
produce music if delivered to an electronic

Who Needs Software
Engineering?
Steve McConnell

6 I E E E S O F T W A R E J a n u a r y / F e b r u a r y 2 0 0 1

FROM THE EDITOR

instrument? This does not fundamen-
tally differ from a ladder diagram
that controls the execution of a pro-
grammable logic controller.

Larry Graham: I agree that the
line between software and hardware
is blurry. Patent law has a fairly rich
tradition that equates the two—vir-
tually every hardware device can be
described in terms of a function it
performs and vice versa.

Is software engineering
invariant?

Annie Kuntzmann-Combelles: I
think the basic practices needed to de-
velop software properly are always
the same: get clear and complete re-
quirements from customers; manage
changes to requirements; estimate,
plan, and track the work to be done;
select an adequate life cycle; define
and perform QA activities; and main-
tain product integrity. The software
architecture and coding might differ
from one application to the other, but
the process aspects are invariant.

Tomoo Matsubara: I don’t think
software development is always the
same. My recommendation for im-
proving software process is to apply
domain-specific methodologies and
tools and conduct problem-focused
process improvement. The levels of
importance and priorities are differ-
ent between domains.

For example, one of the most crit-
ical processes for commercial soft-
ware is fixing data flow. For scientific
software, a key to success is choosing
the right algorithm. For COTS, it’s
designing a good human–machine in-
terface. For embedded systems, it’s
pushing instructions into the fewest
memory chips. For maintenance, it’s
rigorous testing with regression tests.
Software development practices should
vary accordingly.

Grant Rule: Think about the
games industry, where the “soft-
ware” is delivered on CD-ROM or
game cartridges. Game development
can take vast amounts of schedule.
Teams can be quite large—25 to 30
people from a variety of disciplines
including analysts, designers, coders,
testers, QA staff, and project man-

agement—and lots of nontraditional
software personnel such as writers,
artists, and so on. Schedules must be
managed carefully to meet holiday
sales seasons. If a game misses its
marketing window, it might be a
commercial failure; there’s no second
chance. Reliability is important: the
game is mass-produced on CD-
ROM, and from that point forward
there is no real chance to correct it—
it is infeasible to recall hundreds of
thousands of copies to fix a defect.

The result seems to be that, in some
cases at least, game developers take a
more rigorous approach to “engineer-
ing” their software than do some de-
velopers of commercial data-process-
ing applications. All this seems to be
“software engineering” to me.

What’s unique about
software?

Robert Cochran: I use the follow-
ing definition to describe what is
unique or special about software:

1. Software is intangible (which I think
is true even if it gets embedded).

2. It has high intellectual content
(many other intangibles have low
intellectual content).

3. It is generally not recognized as an
asset by accountants and so is off
the balance sheet.

4. Its development process is labor
intensive, team based, and project
based. We forget sometimes how
little of the rest of the world re-
gards projects as the normal way
to work.

5. Software doesn’t exhibit any real
separation between R&D and
production.

6. Software is potentially infinitely
changeable. Once you make a
physical widget, there are severe
limits on how you can change it.
In principle, we can keep changing
software forever.

Is there any real distinction between
printing out a source code listing, cre-
ating a binary, or burning software
onto a chip or CD-ROM? In all these
cases, we are just “fixing” a copy of
the software in some form that cannot

DEPARTMENT EDITORS

Bookshelf: Warren Keuffel,
wkeuffel@computer.org

Country Report: Deependra Moitra,
d.moitra@computer.org

Design: Martin Fowler, ThoughtWorks,
fowler@acm.org

Loyal Opposition: Robert Glass, Computing Trends,
rglass@indiana.edu

Manager: Don Reifer, Reifer Consultants,
dreifer@sprintmail.com

Quality Time: Jeffrey Voas, Cigital,
voas@cigital.com

STAFF

Group Managing Editor
Dick Price

Senior Lead Editor
Dale C. Strok

dstrok@computer.org

Associate Lead Editors
Crystal Chweh, Jenny Ferrero, and

Dennis Taylor

Staff Lead Editor
Shani Murray

Magazine Assistants
Dawn Craig and Angela Williams

software@computer.org

Art Director
Toni Van Buskirk

Cover Illustration
Dirk Hagner

Technical Illustrator
Alex Torres

Production Artists
Carmen Flores-Garvey and Larry Bauer

Acting Executive Director
Anne Marie Kelly

Publisher
Angela Burgess

Membership/Circulation
Marketing Manager
Georgann Carter

Advertising Assistant
Debbie Sims

CONTRIBUTING EDITORS

Denise Hurst, Kirk Kroeker, Nancy Mead, Kalpana
Mohan, Ware Myers, Paula Powers, Judy Shane,

Gil Shif, Tanya Smekal, Margaret Weatherford

Editorial: All submissions are subject to editing for clarity,
style, and space. Unless otherwise stated, bylined articles
and departments, as well as product and service descrip-
tions, reflect the author’s or firm’s opinion. Inclusion in
IEEE Software does not necessarily constitute endorsement
by the IEEE or the IEEE Computer Society.

To Submit: Send 2 electronic versions (1 word-processed
and 1 postscript or PDF) of articles to Magazine Assistant,
IEEE Software, 10662 Los Vaqueros Circle, PO Box 3014,
Los Alamitos, CA 90720-1314; software@computer.org. Ar-
ticles must be original and not exceed 5,400 words including
figures and tables, which count for 200 words each.

J a n u a r y / F e b r u a r y 2 0 0 1 I E E E S O F T W A R E 7

FROM THE EDITOR

directly or easily be modified. That
does not have any relevance to the na-
ture of the software as such.

Grant: That makes software just
like any written work, art book, or
design drawing. The medium (tech-
nology) might differ—wax tablets,
canvas, paper—but anything that can
have multiple copies made in a muta-
ble medium sounds like it could be
this thing called “software.”

Martin Fowler: Robert’s Number
5 seems to be the key point. Until you
deploy you can build, modify, and
evolve the software, regardless of
whether you eventually deploy to
PROMs or CD. That ability to
evolve while building is a key aspect
of software that has no equivalent in
disciplines where you must separate
design from construction.

This question of how “soft” is
software is quite an important point
and one that gels particularly with
me. One of the reasons that I’m so
much in favor of light methods is
that they try to make software softer
while many methodologies try to
make it harder. In the information
systems world, softness is an impor-
tant and valuable asset.

Making software softer
Steve McConnell: That does seem to

be the age-old challenge: How do you
keep software from becoming brittle?
How do you keep it soft? Whether
you’re creating software, or a com-
puter chip, or even a building, it seems
as though it would be advantageous to
keep the thing you’re building “soft” as
far as possible into the project.

Terry Bollinger: This overall ques-
tion helps to deal with trying to under-
stand the baffling diversity of produc-
tion styles in the software marketplace.
“Hard” software such as that found in
processor chips is catastrophically ex-
pensive to fix after fielding, and so dri-
ves the entire software design process
to be very conservative and validation
intensive. “Fluid” software that can be
changed automatically over the Inter-
net drives the opposite behavior. I think
that understanding these kinds of is-
sues is quite fundamental to software
management.

I do think we need to have a better
overall definition of software. The
very fact that I had to mangle to-
gether a phrase as awful as “hard”
software to describe algorithms en-
coded into silicon shows that the in-
dustry has become more complex
than it was in the days when you had
vacuum tubes and bits on punched
cards, and not much in between.

I think the distinction needs to fo-
cus on the idea of “information ma-
chines”—what we have traditionally
called software—versus the particu-
lar method of distribution and up-
date of such machines. Those are two
separate dimensions, not one. A
bunch of gears is not an information
machine, because it relies primarily
on physical materials for its proper-
ties, even if it happens to do a little
information processing at the same
time (for example, odometers in
cars). A structured algorithm masked
into an addressable array that is an
integral part of a processor chip most
emphatically is an information ma-
chine, because its complete set of
properties can be represented as
structured binary information only,
without any reference to the chip’s
physical properties.

Don Bagert: In defining what’s re-
ally software, my thought is to look at
what the object code does (rather than
where it resides), as well as the source
code. I would define it as follows:
“Software is a set of instructions that
are interpreted or executed by a com-
puter.” The source code is definitely
“soft” not in the sense of the deploy-
ment medium but in that it is a non-
physical entity. It consists of a series of
instructions, by definition nonphysical,
that can be translated into object code
or interpreted by a computer processor.
My colleague Dan Cooke has an inter-
esting view: a Universal Turing ma-
chine corresponds to computer hard-
ware, while an individual Turing
machine defined to solve a particular
problem corresponds to software.

What is software without
programming?

Steve: My original focus on the
medium on which the software hap-

EDITOR-IN-CHIEF:
Steve McConnell

10662 Los Vaqueros Circle
Los Alamitos, CA 90720-1314

software@construx.com

EDITOR-IN-CHIEF EMERITUS:
Alan M. Davis, Omni-Vista

ASSOCIATE EDITORS-IN-CHIEF

Design: Maarten Boasson, Quaerendo Invenietis
boasson@science.uva.nl

Construction: Terry Bollinger, Mitre Corp.
terry@mitre.org

Requirements: Christof Ebert, Alcatel Telecom
christof.ebert@alcatel.be

Management: Ann Miller, University of Missouri, Rolla
millera@ece.umr.edu

Quality: Jeffrey M. Voas, Cigital
voas@cigital.com

EDITORIAL BOARD

Don Bagert, Texas Tech University
Andy Bytheway, Univ. of the Western Cape
Ray Duncan, Cedars-Sinai Medical Center
Richard Fairley, Oregon Graduate Institute

Martin Fowler, ThoughtWorks
Robert Glass, Computing Trends

Natalia Juristo, Universidad Politécnica de Madrid
Warren Keuffel, independent consultant
Brian Lawrence, Coyote Valley Software

Karen Mackey, Cisco Systems
Stephen Mellor, Project Technology

Deependra Moitra, Lucent Technologies, India
Don Reifer, Reifer Consultants

Wolfgang Strigel, Software Productivity Centre
Karl Wiegers, Process Impact

INDUSTRY ADVISORY BOARD

Robert Cochran, Catalyst Software, chair
Annie Kuntzmann-Combelles, Q-Labs

Enrique Draier, PSINet
Eric Horvitz, Microsoft Research

David Hsiao, Cisco Systems
Takaya Ishida, Mitsubishi Electric Corp.

Dehua Ju, ASTI Shanghai
Donna Kasperson, Science Applications International

Pavle Knaflic, Hermes SoftLab
Günter Koch, Austrian Research Centers

Wojtek Kozaczynski, Rational Software Corp.
Tomoo Matsubara, Matsubara Consulting

Masao Matsumoto, Univ. of Tsukuba
Dorothy McKinney, Lockheed Martin Space Systems

Susan Mickel, AtomicTangerine
Dave Moore, Vulcan Northwest

Melissa Murphy, Sandia National Laboratories
Kiyoh Nakamura, Fujitsu

Grant Rule, Software Measurement Services
Girish Seshagiri, Advanced Information Services

Chandra Shekaran, Microsoft
Martyn Thomas, Praxis

Rob Thomsett, The Thomsett Company
John Vu, The Boeing Company

Simon Wright, Integrated Chipware
Tsuneo Yamaura, Hitachi Software Engineering

MAGAZINE OPERATIONS COMMITTEE

Sorel Reisman (chair), James H. Aylor, Jean Bacon,
Thomas J. Bergin, Wushow Chou, George V. Cy-

benko, William I. Grosky, Steve McConnell, Daniel
E. O’Leary, Ken Sakamura, Munindar P. Singh,

James J. Thomas, Yervant Zorian

PUBLICATIONS BOARD

Rangachar Kasturi (chair), Angela Burgess (pub-
lisher), Jake Aggarwal, Laxmi Bhuran, Lori Clarke,

Mike T. Liu, Sorel Reisman, Gabriella Sannitti
diBaja, Sallie Sheppard, Mike Williams, Zhiwei Xu

8 I E E E S O F T W A R E J a n u a r y / F e b r u a r y 2 0 0 1

FROM THE EDITOR

pens to be deployed seems to have
been a red herring. I think software
engineering applies broadly to creat-
ing complex “instructions,” regard-
less of the target media. Years ago,
people argued that the need for soft-
ware engineering had passed because
Fortran had been invented. People
didn’t have to write programs any-
more; they could just write down for-
mulas! Thirty years later, we now
think of Fortran programming as
comparatively low-level software en-
gineering—“writing down formulas”
is harder than it looks.

As the years go by, we see the same
argument repeated time and time
again. The early claims about creat-
ing programs using Visual Basic were
reminiscent of the early press on For-
tran—“No more writing code! Just

drag-and-drop buttons and dialogs!”
And today more new programs are
being written in Visual Basic than any
other language. Ten years from now,
we’ll probably see programming envi-
ronments that are much higher-level
than Visual Basic; people working in
those environments will benefit from
software engineering.

Martin: This is an important
point. Often people talk about things
“without programming” (one of my
alarm-bell phrases). You find this in
phrases like, “Buy our ERP system
and you can customize it for your
business without programming.” So
you end up with people who are ex-
perts in customizing XYZ’s ERP sys-
tem. Are they doing software engi-
neering? I would say yes, even
though their language is putting con-

figuration information into tables.
They still need to know about de-
bugging and testing.

Indeed, whenever we talk about
writing tools so that “users can con-
figure the software without program-
ming,” we run into the same prob-
lems. If you can enter programs
through wizards, you still have to be
able to debug and test the results.

Wolfgang: At the risk of being
simplistic, I would define software as
follows: “Software is a set of instruc-
tions that are interpreted (or exe-
cuted) by a computer.” I did not say
“electronic computer” because it
could well be a chemical computer or
one that operates with light. That
delegates the problem to defining the
term “computer”—and that’s a hard-
ware problem!

