
C o p y r i g h t © 2 0 0 0 S t e v e n C . M c C o n n e l l . A l l R i g h t s R e s e r v e d . S e p t e m b e r / O c t o b e r 2 0 0 0 I E E E S O F T W A R E 7

O
ne consequence of the youthfulness
of software engineering is that we
have not standardized our terminol-
ogy. This might seem like a small
matter of primarily academic inter-
est, but the lack of defined terms has

significant and unexpected con-
sequences. The number of am-
biguous terms in software engi-
neering is practically limitless,
and in this column I will focus on
only a few: “requirements,”“pro-
totype,” “specification,” “archi-
tecture,” and “analysis.”

Term Limits
Problems with terminology

begin as soon as a project gets
underway. Suppose your customer asks you
to write a “requirements” document. What
do you write? I have found that different or-
ganizations might call any of the following a
“requirements document”:

1. A half-page software product vision
2. A two-page list of key features
3. A 50-page list of detailed end-user-level

requirements
4. A 250-page exhaustive listing of every

visual element on every screen, input-
field-by-input-field descriptions of all
possible input conditions, all possible
system state changes, detailed descrip-
tions of every persistent data element,
and so on

For my purposes, I have gravitated toward
calling Level 1 requirements a “product vi-
sion,” Level 2 a “feature list,” Level 3 a
“functional-requirements document,” and
Level 4 a “functional specification,” but my
usage is by no means standard.

One technique used to pin down require-
ments is prototyping, which brings on a sec-
ond wave of confusing terminology. Some
people use “prototype” to refer to a func-
tioning program that will evolve into a
working program but is less robust than the
fully functional program will be (I call this
an “evolutionary prototype”). Other people
use “prototype” to refer to a nonfunctional
mock-up that illustrates how the fully func-
tional system will look or operate but is not,
itself, intended to be evolved into the work-
ing system (I call this a “throwaway proto-
type”). Still others use the term “prototype”
to refer to low-quality software that is at an
early prerelease stage of development.

At some point, most project teams create
a “specification” or “spec,” which muddies
the waters still further. “Specification”
refers most commonly to detailed functional
requirements—the Level 4 requirements
mentioned earlier. Almost as often, “spec”
refers to what I have called Level 2 or Level
3 requirements. Some people use “spec” to
refer to an architecture document, detailed
design, or other work product. One com-
pany used the word “specification” to refer
to a document that contained every piece of
information relevant to a project—and the

from the editor

What’s in a Name?

Steve McConnell

E d i t o r i n C h i e f : S t e v e M c C o n n e l l ■ C o n s t r u x S o f t w a r e ■ s o f t w a r e @ c o n s t r u x . c o m

8 I E E E S O F T W A R E S e p t e m b e r / O c t o b e r 2 0 0 0

document didn’t have any require-
ments information at all (thanks to
Karl Wiegers for this example).

“Architecture” has varying mean-
ings, too. Some people use “architec-
ture” to refer to user interface design,
especially to the flow among the dif-
ferent elements of the user interface
that will be visible to the software’s
users, but not to technical implemen-
tation work. Others use “architec-
ture” to mean partitioning a system
into subsystems and defining the in-
terfaces between them. Still others
mean anything related to the func-
tional design of the software-to-
technical implementation work.

Finally, the meaning of “analysis”
varies from one organization to the
next. Many use it to refer to the early
requirements activity of analyzing
user needs. Others use it interchange-
ably with requirements elicitation
and documentation—essentially syn-
onymous with “requirements engi-
neering.” Others use “analysis” to
refer to the activities that bridge re-
quirements gathering to design work.
Once again, no meaning is common
enough to allow any single meaning
to be declared an obvious standard.

Expensive Consequences
These differences in the ways com-

mon software engineering terms are
used can have major consequences. I
participated as an expert witness in a
multimillion-dollar lawsuit in which
a company sued its former vice pres-
ident of technology for nonperfor-
mance of work duties. The company
alleged that it had assigned the VP to
develop a prototype and architecture,
and that he had failed to do so. The
VP was flabbergasted that the com-
pany could baldly assert that he had
not created these work products
when in fact the work products were
available for all to see.

It turned out that the VP had de-
veloped an evolutionary user inter-
face prototype and demonstrated it
to the company’s senior manage-
ment. Senior management was en-
thusiastic about the prototype and

encouraged the VP to “finish” the
prototype. Senior management as-
sumed that the prototype was a
throwaway prototype, and remain-
ing details could be added quickly as
a precursor to the main implementa-
tion effort. The VP assumed that
“finishing the prototype” meant
evolving it to a level of robustness
and reliability at which it could be re-
leased for commercial use. “Finishing
the prototype” meant “finishing the
product.” This led to a critical mis-
communication in which senior man-
agement thought the prototyping
work could be finished in a matter of
days or at most weeks, while the VP
thought the prototype development
would take many months, possibly
as long as a year.

At issue in the same lawsuit, se-
nior management had assigned the
VP to create a “product architec-
ture.” The VP’s prototype showed
many details of the user interface de-
sign, flow among user interface ele-
ments, and so on. He considered this
to be a full-fledged product architec-
ture. The company’s senior manage-
ment expected the VP to develop a
functional architecture that defined
the software’s decomposition into
subsystems, class hierarchies, net-
work architecture, and so on. As the
company insisted that the VP work
harder on the “architecture,” the VP
spent more time fleshing out details
of the prototype. The more time the
VP spent fleshing out the prototype,
the more frustrated the senior man-
agement became that the prototype
was taking so much longer than they
expected, and the more frustrated
they were that the VP refused to cre-
ate an architecture.

Coming to Terms
Not every misunderstanding of

software engineering terms ends up
in court, but we as a profession face
some serious implications of these
undefined terms. The IEEE Com-
puter Society is creating a test that
will be used to award “Certified
Software Engineering Professional”

FROM THE EDITOR

EDITOR-IN-CHIEF:
Steve McConnell

10662 Los Vaqueros Circle
Los Alamitos, CA 90720-1314

software@construx.com

EDITORS-IN-CHIEF EMERITUS:
Carl Chang, Univ. of Illinois, Chicago

Alan M. Davis, Omni-Vista

EDITORIAL BOARD

Don Bagert, Texas Tech University
Maarten Boasson, Hollandse Signaalapparaten

Terry Bollinger, The MITRE Corp.
Andy Bytheway, Univ. of the Western Cape

David Card, Software Productivity Consortium
Larry Constantine, Constantine & Lockwood
Ray Duncan, Cedars-Sinai Medical Center

Richard E. Fairley, Oregon Graduate Institute
Christof Ebert, Alcatel Telecom
Martin Fowler, ThoughtWorks

Robert L. Glass, Computing Trends
Lawrence D. Graham, Black, Lowe, and Graham

Natalia Juristo, Universidad Politécnica de Madrid
Warren Keuffel

Brian Lawrence, Coyote Valley Software
Karen Mackey, Cisco Systems

Tomoo Matsubara, Matsubara Consulting
Stephen Mellor, Project Technology

Deependra Moitra, Lucent Technologies, India
Don Reifer, Reifer Consultants

Wolfgang Strigel, Software Productivity Centre
Jeffrey M. Voas, Reliable Software

Technologies Corp.
Karl E. Wiegers, Process Impact

INDUSTRY ADVISORY BOARD

Robert Cochran, Catalyst Software, chair
Annie Kuntzmann-Combelles, Objectif Technologie

Enrique Draier, PSINet
Eric Horvitz, Microsoft

David Hsiao, Cisco Systems
Takaya Ishida, Mitsubishi Electric Corp.

Dehua Ju, ASTI Shanghai
Donna Kasperson, Science Applications International

Günter Koch, Austrian Research Centers
Wojtek Kozaczynski, Rational Software Corp.

Masao Matsumoto, Univ. of Tsukuba
Dorothy McKinney, Lockheed Martin Space Systems

Susan Mickel, BoldFish
Dave Moore, Vulcan Northwest

Melissa Murphy, Sandia National Lab
Kiyoh Nakamura, Fujitsu

Grant Rule, Guild of Independent Function
Point Analysts

Girish V. Seshagiri, Advanced Information Services
Chandra Shekaran, Microsoft

Martyn Thomas, Praxis
Rob Thomsett, The Thomsett Company

John Vu, The Boeing Company
Simon Wright, Integrated Chipware

Tsuneo Yamaura, Hitachi Software Engineering

MAGAZINE OPERATIONS COMMITTEE

Sorel Reisman (chair), William Everett (vice chair),
James H. Aylor, Jean Bacon, Thomas J. (Tim)
Bergin, Wushow Chou, George V. Cybenko,

William I. Grosky, Steve McConnell, Daniel E.
O’Leary, Ken Sakamura, Munindar P. Singh,

James J. Thomas, Yervant Zorian

PUBLICATIONS BOARD

Sallie Sheppard (vice president), Sorel Reisman
(MOC chair), Rangachar Kasturi (TOC chair), Jon
Butler (POC chair), Angela Burgess (publisher),

Laurel Kaleda (IEEE representative), Jake Aggarwal,
Laxmi Bhuyan, Lori Clarke, Alberto del Bimbo,

Mike T. Liu, Mike Williams (secretary), Zhiwei Xu

S e p t e m b e r / O c t o b e r 2 0 0 0 I E E E S O F T W A R E 9

FROM THE EDITOR

credentials. It’s challenging to de-
velop a multiple-choice question like
“What should go into a require-
ments document?” (or architecture,
prototype, spec, or analysis) when
common usage varies so much.

The legal field has a useful notion
called a “term of art.” To lawyers, a
term of art is a word that has been
analyzed and discussed so much in
court cases and statutes that it has a
precisely defined meaning, a mean-
ing that might be quite different
from the common language mean-
ing. Software engineering has taken
a step in the right direction with
IEEE Std 610.12, the “IEEE Stan-
dard Glossary of Software Engineer-
ing Terminology.” (The sidebar “A
Few Standard Definitions” defines
the terms used in this column.) I
hope that as the years pass, common
usage of these critical terms will
gravitate to specific, precise mean-
ings and that IEEE Std 610.12 and
common usage will be brought into
alignment.

DEPARTMENT EDITORS

Bookshelf: Warren Keuffel, wkeuffel@computer.org

Culture at Work: Karen Mackey, Cisco Systems,
kmackey@best.com

Loyal Opposition: Robert Glass, Computing Trends,
rglass@indiana.edu

Manager: Don Reifer, Reifer Consultants,
dreifer@sprintmail.com

Quality Time: Jeffrey Voas, Reliable Software Tech-
nologies Corp., jmvoas@rstcorp.com

Soapbox: Tomoo Matsubara, Matsubara Consulting,
matsu@computer.org

Softlaw: Larry Graham, Black, Lowe, and Graham,
graham@blacklaw.com

STAFF

Group Managing Editor
Dick Price

Managing Editor
Dale C. Strok

dstrok@computer.org

Associate Editor
Dennis Taylor

Features Editor
Crystal Chweh

Staff Editor
Jenny Ferrero

Assistant Editors
Cheryl Baltes and Shani Murray

Magazine Assistants
Dawn Craig and Angela Williams

software@computer.org

Art Director
Toni Van Buskirk

Cover Illustration
Dirk Hagner

Technical Illustrator
Alex Torres

Production Artist
Carmen Flores-Garvey

Acting Executive Director
Anne Marie Kelly

Publisher
Angela Burgess

Membership/Circulation
Marketing Manager
Georgann Carter

Advertising Assistant
Debbie Sims

CONTRIBUTING EDITORS

Nancy Mead, Ware Myers,
Gil Shif, Pradip Srimani

Editorial: All submissions are subject to editing for clarity,
style, and space. Unless otherwise stated, bylined articles and
departments, as well as product and service descriptions, re-
flect the author’s or firm’s opinion. Inclusion in IEEE Soft-
ware does not necessarily constitute endorsement by the IEEE
or the IEEE Computer Society.

To Submit: Send 2 electronic versions (1 word-processed
and 1 postscript or PDF) of articles to Magazine Assistant, IEEE
Software, 10662 Los Vaqueros Circle, PO Box 3014, Los
Alamitos, CA 90720-1314; software@computer.org. Articles
must be original and not exceed 5,400 words including figures
and tables, which count for 200 words each.

A Few Standard Definitions
The closest we have to a vocabulary standard are the terms defined

in IEEE Std 610.12. Here are its definitions of the terms used in this
column:

Architecture. The organizational structure of a system or component.
Prototype. A preliminary type, form, or instance of a system that

serves as a model for later stages or for the final, complete version of
the system.

Requirement. (1) A condition or capability needed by a user to solve
a problem or achieve an objective. (2) A condition or capability that
must be met or possessed by a system or system component to satisfy a
contract, standard, specification, or other formally imposed documents.
(3) A documented representation of a condition or capability as in (1)
or (2).

Requirements Analysis. (1) The process of studying user needs to ar-
rive at a definition of system, hardware, or software requirements. (2)
The process of studying and refining system, hardware, or software
requirements.

Specification. A document that specifies in a complete, precise, verifi-
able manner the requirements, design, behavior, or other characteristics
of a system or component and, often, the procedures for determining
whether these provisions have been satisfied.

Coming in
the Next Issue:

Recent Updates
in Estimation
Barry Boehm and
Richard Fairley,
guest editors

The Personal
Software
Process
Watts Humphrey,
guest editor

