
6 I E E E S o f t w a r e M a r c h / A p r i l 1 9 9 9 S t e v e n C . M c C o n n e l l . A l l R i g h t s R e s e r v e d @ 1 9 9 9

F r o m t h e E d i t o r

Steve McConnell

Many software practitioners think of software en-
gineering knowledge almost exclusively as knowl-
edge of specific technologies: Java, Perl, HTML, C++,
Linux, Windows NT, and so on. Knowledge of specific
technology details is necessary to perform computer
programming. If someone assigns you to write a pro-
gram in C++, you have to know something about
C++ to get your program to work.

You often hear people say that software devel-
opment knowledge has a three-year half-life: half of
what you need to know today will be obsolete
within three years. In the domain of technology-
related knowledge, that’s probably about right. But
there is another kind of software development
knowledge that is likely to serve a professional pro-
grammer throughout his or her career.

ESSENCE AND ACCIDENT

In 1987, Fred Brooks published an influential ar-
ticle, “No Silver Bullets—Essence and Accident in
Software Engineering” (Computer, April 1987). Its
main contention was that no single tool or method-
ology—no “silver bullet”—portended a 10-to-1 im-
provement in productivity over the next decade. The
reasoning behind that claim is highly relevant to the
distinction between technology knowledge and
software engineering principles.

In using the words “essence” and “accident,”
Brooks drew on an ancient philosophical tradition
of distinguishing between “essential”and “acciden-
tal” properties. Essential properties are those prop-
erties that a thing must have to be that thing: A car
must have an engine, wheels, and a transmission in
order to be a car. These are essential properties. A
car might or might not have a V8 or a V6, studded
snow tires or racing slicks, an automatic or a man-
ual transmission. These are “accidental” properties,

the properties that arise by happenstance and do
not affect the basic “car-ness” of the car.

According to Brooks, the most difficult work of
software development is not that of representing
the concepts faithfully in a specific computer pro-
gramming language (coding) or checking the fi-
delity of that representation (testing). That is the ac-
cidental part of software engineering.

The essence of software engineering, Brooks ar-
gued, consists of working out the specification, de-
sign, and verification of a highly precise and richly
detailed set of interlocking concepts. What makes
software development difficult is its essential com-
plexity, conformity, changeability, and invisibility.
Computer programs are complex by nature. Even if
you could invent a programming language that op-
erated at the level of the problem domain, pro-
gramming would still be a complicated activity be-
cause you would still need to define relationships
between real-world entities precisely, identify ex-
ception cases, anticipate all possible state transi-
tions, and so on. Strip away the accidental work in-
volved in representing these factors in a specific
programming language within a specific operating
system, and you still have the essential difficulty of
developing and debugging the underlying real-
world concepts.

Additional complexity arises from the fact that
software cannot be created in isolation, but must
conform to real-world constraints such as pre-exist-
ing hardware, third-party components, government
regulations, and legacy data formats. The software
designer often faces inflexible, external factors that
limit the extent to which complexity can be reduced.

Another source of complexity is software’s
changeability. The more successful a program is, the
more uses people will find for it, and the more it will
be adapted beyond the domain for which it was
originally intended.E

D
IT

O
R

-I
N

-C
H

IE
F

:
St

ev
e

M
cC

o
n

n
el

l•
C

o
n

st
ru

x
So

ft
w

ar
e

 •
so

ft
w

ar
e@

co
n

st
ru

x.
co

m

Software Engineering
Principles

.

M a r c h / A p r i l 1 9 9 9 I E E E S o f t w a r e 7

A final source of software complexity arises from
software’s inherent invisibility. Software can’t be rep-
resented with geometric models. Attempts to geo-
metrically represent even simple, static logic flow
quickly become absurdly complicated, as anyone
who has ever tried to draw a full flow chart for even
a relatively simple program will attest. Adding to the
problem, software doesn’t exist meaningfully in sta-
tic form; it only exists meaningfully when it’s exe-
cuted. So even absurdly complicated geometrical rep-
resentations show software’s structure as simpler than
it really is because they ignore the time dimension.

Brooks argued that we’ve already made the major
gains in the accidental elements of software engi-
neering, such as the invention of high-level lan-
guages, movement to interactive computing from
batch processing, and development of powerful
integrated environments. Any further order-of-
magnitude improvements can be made only by ad-
dressing software’s essential difficulties: the com-
plexity, conformity, changeability, and invisibility
inherent to software development.

SOFTWARE ENGINEERING PRINCIPLES

Knowledge that addresses what Brooks calls the
essential difficulty of software engineering is what
I think of as “software engineering principles.”
During the past 30 years, since the first NATO con-
ference on software engineering in 1968, the soft-
ware industry has come a long way in identifying
the essential knowledge that a software engineer
needs in order to develop software effectively.

How small was this body of knowledge in 1968?
Consider that the first fully correct binary search al-
gorithm was published just six years before the
NATO conference. C. Böhm and G. Jacopini published
the paper that made elimination of the goto and
structured programming possible only two years
before the conference (“Flow Diagrams, Turing
Machines, and Languages with Only Two Formation
Rules,” Communications of the ACM, May 1966, pp.
366-371). Edsger Dijkstra wrote his famous “GoTo
Statement Considered Harmful” letter to the editor
the same year as the conference (Communications
of the ACM, Vol. 11, 1968, pp. 147-148). Larry
Constantine, Glenford Myers, and Wayne Stevens
didn’t publish the first paper on structured design
until six years after the conference (“Structured
Design,” IBM Systems Journal, No. 2, 1974, pp. 115-

139). Tom Gilb published the first book on software
metrics three years later (Software Metrics, Winthrop
Publishers, 1977), and Tom DeMarco’s landmark
book on structured analysis didn’t appear until two
years after that (Structured Analysis and System
Specification, Prentice Hall, 1979). Anyone who tried
to identify a stable core of knowledge in 1968 would
have had their work cut out for them. Moreover, it’s
hard to find much knowledge that would have been
considered part of a “stable core” of software engi-
neering knowledge in 1968 that is still in use
today—perhaps only about 10 percent.

Think of this in terms of the total body of knowl-
edge needed to create a complex software system,
and the proportion of that body of knowledge that
is relatively stable—the part that is not going to be
obsolete within three years. As Figure 1 illustrates,
the stable core of software engineering knowledge
at the time of the 1968 NATO conference was rela-
tively small. Today, we still do not have perfect
knowledge of what is needed to develop software

Figure 1. Of the total body of knowledge

needed to create a complex software system in

1968, the stable core of knowledge—that part still

in use today—comprised only about 10 percent.

Figure 2. Today, circa 2000, the stable core has

grown to about 75 percent of the total.

.

8 I E E E S o f t w a r e M a r c h / A p r i l 1 9 9 9

effectively. As Figure 2 shows, I estimate that the
stable core now occupies perhaps 75 percent of
the knowledge needed to develop a software sys-
tem. But we probably don’t ever want a core that
makes up 100 percent of the body of knowledge;
that would indicate that software engineering had
reached a steady state and was immune to future
improvements.

Considered from the body-of-knowledge view-
point, I think we’ve made significant progress in the
areas Brooks refers to as the “essential difficulties”of
software development. We now have adequate or
good reference books on requirements develop-
ment, design, construction, testing, reviews, quality

assurance, software project management, algo-
rithms, and user interface design, just to name a few
topics, and new and better books that codify the
knowledge needed to be a software engineer are
appearing regularly. An investment in learning soft-
ware engineering principles is a particularly good
investment for a software professional to make be-
cause that knowledge will last a whole career.

As a software development professional, you
need knowledge of specific technologies to do
your job. But you need knowledge of software en-
gineering principles to do your job well. A contin-
uing pursuit of such knowledge is one mark of a
true professional. ❖

F r o m t h e E d i t o r

EDITORIAL BOARD

Ted Biggerstaff (Microsoft), Maarten Boasson (Hollandse Signaal-
apparaten), Terry Bollinger (MITRE), Andy Bytheway (Univ. of the
Western Cape), David Card (Software Productivity Consortium), Carl
Chang (Univ. of Ill., Chicago), Larry Constantine (Constantine &
Lockwood), Christof Ebert (Alcatel Telecom), Robert Glass (Computing
Trends), Lawrence D. Graham (Christensen, O’Connor, Johnson, &
Kindness), Natalia Juristo (Universidad Politécnica de Madrid), Barbara
Kitchenham (Univ. of Keele), Tomoo Matsubara (Matsubara
Consulting), Nancy Mead (Software Eng. Inst.), Stephen Mellor (Project
Technology), Pradip Srimani (Colorado State Univ.), Wolfgang Strigel
(Software Productivity Centre), Jeffrey M. Voas (Reliable Software
Technologies Corporation), Karl E. Wiegers (Process Impact)

INDUSTRY ADVISORY BOARD

Robert Cochran (Catalyst Software), Annie Kuntzmann-Combelles
(Objectif Technologie), Alan Davis (Omni-Vista), Enrique Draier
(Netsystem SA), William Griffin (GTE Labs), Arthur Hersh (Hersh
Group), Eric Horvitz (Microsoft), Dehua Ju (ASTI Shanghai), Donna
Kasperson (Science Applications Int’l), Günter Koch (Austrian
Research Centers), Wojtek Kozaczynski (Rational Software Corp.),
Karen Mackey (Lockheed Martin), Masao Matsumoto (Univ. of
Tsukuba), Susan Mickel (Rational Univ.), Deependra Moitra
(Lucent Technologies, India), Melissa Murphy (Sandia), Kiyoh
Nakamura (Fujitsu), Grant Rule (Guild of Independent Function
Point Analysts), Chandra Shekaran (Microsoft), Martyn Thomas
(Praxis), Sadakazu Watanabe (Fukui Univ.)

CONTRIBUTING EDITORS

Ware Myers, Roger Pressman, Ellen Ullman, Mike Yacci

MAGAZINE OPERATIONS COMMITTEE

Carl Chang (chair), William Everett (vice chair), James Aylor, Jean
Bacon, Wushow Chou, George Cybenko, William Grosky, Steve
McConnell, Daniel E. O’Leary, Ken Sakamura, Munindar P. Singh,
James J. Thomas, Yervant Zorian

PUBLICATIONS BOARD

Benjamin Wah (chair), Jake Aggarwal, Gul Agha, Jon Butler, Alberto
del Bimbo, Sorel Reisman, Ron Williams, Zhiwei Xu

Editorial: Send 2 electronic versions (1 word-processed and 1 postscript) to Managing Editor,
IEEE Software, 10662 Los Vaqueros Cir., PO Box 3014, Los Alamitos, CA 90720-1314;
software@computer.org. Articles must be original and not exceed 5,400 words including figures and
tables, which count for 200 words each. All submissions are subject to editing for clarity, style, and space.
Unless otherwise stated, bylined articles and departments, as well as product and service descriptions,
reflect the author’s or firm’s opinion. Inclusion in IEEE Software does not necessarily constitute endorse-
ment by the IEEE or the IEEE Computer Society.

Copyright and reprint permission: Copyright © 1999 by the Institute of Electrical and Electronics
Engineers, Inc. All rights reserved. Abstracting is permitted with credit to the source. Libraries are permitted
to photocopy beyond the limits of US copyright law for private use of patrons those post-1977 articles that
carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through
the Copyright Clearance Center, 222 Rosewood Dr., Danvers, MA 01923. For copying, reprint, or republica-
tion permission, write to Copyright and Permissions Dept., IEEE Publications Admin., 445 Hoes Ln.,
Piscataway, NJ 08855-1331.

Circulation: IEEE Software (ISSN 0740-7459) is published bimonthly by the IEEE Computer Society. IEEE head-
quarters: 345 E. 47th St., New York, NY 10017-2394. IEEE Computer Society Publications Office: 10662 Los
Vaqueros Cir., PO Box 3014, Los Alamitos, CA 90720-1314; (714) 821-8380; fax (714) 821-4010. IEEE Computer
Society headquarters: 1730 Massachusetts Ave. NW, Washington, DC 20036-1903. Annual
electronic/paper/combo subscription rates for 1999: $27/34/44 in addition to any IEEE Computer Society
dues, $49 in addition to any IEEE dues; $93 for members of other technical organizations. Nonmember sub-
scription rates available on request. Back issues: $10 for members, $20 for nonmembers. This magazine is
available on microfiche.
Postmaster: Send undelivered copies and address changes to Circulation Dept., IEEE Software, PO Box
3014, Los Alamitos, CA 90720-1314. Periodicals Postage Paid at New York, NY, and at additional mailing
offices. Canadian GST #125634188. Canada Post Publications Mail Product (Canadian Distribution) Sales
Agreement Number 0487805. Printed in the USA.

IEEE

EDITOR-IN-CHIEF: STEVE MCCONNELL

10662 LOS VAQUEROS CIRCLE

LOS ALAMITOS, CA 90720-1314
software@construx.com

EDITORS-IN-CHIEF EMERITUS:
CARL CHANG AND ALAN M. DAVIS

MANAGING EDITOR: DALE C. STROK

dstrok@computer.org
STAFF EDITOR: ANNE C. LEAR

ASSISTANT EDITOR: CHERYL BALTES

MAGAZINE ASSISTANT: ROBIN MARTIN

rmartin@computer.org

ART DIRECTOR: JILL BOYER

COVER ILLUSTRATION: DIRK HAGNER

TECHNICAL ILLUSTRATOR: ALEX TORRES

PRODUCTION ARTIST: JILL BOYER

PUBLISHER: MATT LOEB

MEMBERSHIP/CIRCULATION

MARKETING MANAGER: GEORGANN CARTER

ADVERTISING MANAGER: PATRICIA GARVEY

ADVERTISING COORDINATOR:
MARIAN ANDERSON

.

