
C o p y r i g h t  ©  2 0 0 0  S t e v e n  C .  M c C o n n e l l .  A l l  R i g h t s  R e s e r v e d . J u l y / A u g u s t  2 0 0 0 I E E E  S O F T W A R E 5

T
he expert developer’s intellectual tool-
kit is filled with coding tips and tricks
as well as knowledge of design
methodologies, configuration manage-
ment, and the details of current tech-
nologies and development tools. Some

developers might have acquired
additional intellectual tools re-
lated to requirements engineering,
maintenance, testing, and quality
assurance. 

The general, non-software
manager’s intellectual toolkit
contains a completely different
set of tools. General managers are
trained in how to create budgets,
interview prospective employees,
conduct performance reviews,

and so on. Project managers are trained to
manage scope, time, cost, quality, human re-
sources, communications, and risk.1

Effective software project managers have
some of the same tools expert developers,
general managers, and project managers
use, but they also need tools the others don’t
have. The shortage of managers skilled in
software-specific competencies causes severe
problems. Capers Jones points out that poor
software project management is associated
with cancelled projects, cost and schedule
overruns, low quality, missed market oppor-
tunities, low morale, and high turnover.2

Tools
The technical manager should have tools

for five kinds of software-specific work: es-
timating, planning, tracking, risk manage-
ment, and measuring. Let’s take a closer
look at each of these areas.

Estimating
People often think of estimating as

“guesswork” or “expert judgment,” but
those views are more an indictment of the
current state of the practice than a descrip-
tion of effective cost and schedule setting.
Skilled technical managers go through three
basic steps to create project planning num-
bers: first, they estimate the scope of the
software; then, they compute the effort
needed to build a product of that scope; and
finally, they compute a schedule based on
the effort estimate.

The best estimates involve little guess-
work or expert judgment. In the best case, a
product attribute is counted rather than es-
timated to create the scope “estimate.” The
manager might count function points, re-
quirements, GUI elements, or some other
product attribute. The estimator then uses
the organization’s productivity data to com-
pute effort and schedule. A good estimate is
counted and computed rather than guessed
or judged. 

Developers typically don’t learn whole-
software-project estimation, and general man-
agement training certainly doesn’t teach it. To
add estimation tools to their toolkits, software
project managers must develop skills beyond
those acquired in the technical trenches. 

from the editor

The Software 
Manager’s Toolkit
Steve McConnell

E d i t o r  i n  C h i e f :  S t e v e  M c C o n n e l l  ■  C o n s t r u x  S o f t w a r e  ■   s o f t w a r e @ c o n s t r u x . c o m



6 I E E E  S O F T W A R E J u l y / A u g u s t  2 0 0 0

Planning
Many people think of software

project planning as creating a list of
activities in Microsoft Project and
printing a Gantt chart. In reality, that
activity is more properly called sched-
uling and is only one small tool in the
technical manager’s planning toolkit—
and not the most important one ei-
ther. The effective software project
planner must have tools for each of
the following activities:

■ estimating whole-project effort
and schedule;

■ determining how many people are
needed on the project team—in-
cluding an appropriate mix of de-
velopers, testers, and managers; a
good balance of junior and senior
staff; how to build up the staff
over the course of a project; and
so on;

■ choosing a lifecycle model appro-
priate for the project;

■ selecting appropriate technical
practices to elicit requirements,
create designs, manage the intel-
lectual property generated on the
project, construct the code, test
the software, and capture the proj-
ect’s experience for use on future
projects;

■ identifying the kinds of quality as-
surance activities needed to meet
the project’s cost, schedule, and
quality goals—striking a balance
between technical reviews and
testing, the number of levels of
technical reviews, and so on; and

■ crafting a set of tracking indica-
tors that will provide status visi-
bility throughout the project. 

A software project manager will
not learn how to perform any of these
activities in a general, non-software
management training course, and
only the most astute developer will
acquire these skills by doing hands-on
technical work. Most of these activi-
ties are not done on most projects.

Tracking
On a typical project, technical

management is almost a black-box
function: you create some plans at
the beginning, you rarely know
what’s going on during the project,
and you’re forced to accept whatever
comes out at the end. Capers Jones
reports that “software progress mon-
itoring is so poor that several well-
known software disasters were not
anticipated until the very day of ex-
pected deployment.”3

On a well-run project, you have
clear visibility—you know at all
times the status of the project’s cost,
schedule, quality, and functionality.
Bill Hetzel has found that strong
measurement and tracking of project
status characterize industry’s best
projects; in fact, these were evident in
every “best project.”4

If you don’t track a project effec-
tively, you can’t manage it. You’ll
have no way of knowing whether
your plans are being carried out or
whether you need to modify the cur-
rent plans. Effective tracking lets you
detect problems early, while you still
have time to take meaningful correc-
tive action. 

Typical general-management track-
ing controls include task lists, status
meetings and reports, milestone re-
views, budget reports, and manage-
ment by walking around. These tech-
niques tend to provide poor status vis-
ibility because they tend to track only
cost or schedule—if you’re not track-
ing cost, schedule, quality, and func-
tionality, you’re not tracking the proj-
ect. Track any two of these character-
istics, and undetected work will shift
into the other two areas. If you track
only task completion against a sched-
ule (that is, you’re tracking only func-
tionality and schedule), unseen work
will accumulate in the form of low
quality. Developers will do the mini-
mum amount of work necessary to
declare a task done. Later in the proj-
ect, you’ll find that work that was 
reported as “done” is actually incom-
plete in many major and minor ways,
and the project is behind schedule. The
visibility you thought you had into
functionality and schedule turns out

FROM THE EDITOR

EDITOR-IN-CHIEF: 
Steve McConnell

10662 Los Vaqueros Circle
Los Alamitos, CA 90720-1314

software@construx.com

EDITORS-IN-CHIEF EMERITUS:
Carl Chang, Univ. of Illinois, Chicago 

Alan M. Davis, Omni-Vista

EDITORIAL BOARD

Maarten Boasson, Hollandse Signaalapparaten
Terry Bollinger, The MITRE Corp.

Andy Bytheway, Univ. of the Western Cape
David Card, Software Productivity Consortium
Larry Constantine, Constantine & Lockwood
Ray Duncan, Cedars-Sinai Medical Center

Christof Ebert, Alcatel Telecom
Martin Fowler, ThoughtWorks

Robert L. Glass, Computing Trends
Lawrence D. Graham, Black, Lowe, and Graham

Natalia Juristo, Universidad Politécnica de Madrid
Warren Keuffel

Karen Mackey, Cisco Systems
Brian Lawrence, Coyote Valley Software

Tomoo Matsubara, Matsubara Consulting
Stephen Mellor, Project Technology

Don Reifer, Reifer Consultants
Wolfgang Strigel, Software Productivity Centre

Jeffrey M. Voas, Reliable Software 
Technologies Corp.

Karl E. Wiegers, Process Impact

INDUSTRY ADVISORY BOARD

Robert Cochran, Catalyst Software 
Annie Kuntzmann-Combelles, Objectif Technologie

Enrique Draier, PSINet
Eric Horvitz, Microsoft

David Hsiao, Cisco Systems
Takaya Ishida, Mitsubishi Electric Corp.

Dehua Ju, ASTI Shanghai
Donna Kasperson, Science Applications International

Günter Koch, Austrian Research Centers
Wojtek Kozaczynski, Rational Software Corp.

Masao Matsumoto, Univ. of Tsukuba
Dorothy McKinney, Lockheed Martin Space Systems

Susan Mickel, BoldFish
Deependra Moitra, Lucent Technologies, India

Dave Moore, Vulcan Northwest
Melissa Murphy, Sandia National Lab

Kiyoh Nakamura, Fujitsu
Grant Rule, Guild of Independent Function 

Point Analysts
Girish V. Seshagiri, Advanced Information Services

Chandra Shekaran, Microsoft
Martyn Thomas, Praxis

Rob Thomsett, The Thomsett Company 
John Vu, The Boeing Company

Simon Wright, Integrated Chipware
Tsuneo Yamaura, Hitachi Software Engineering

MAGAZINE OPERATIONS COMMITTEE

Sorel Reisman (chair), William Everett (vice chair),
James H. Aylor, Jean Bacon, Thomas J. (Tim)
Bergin, Wushow Chou, George V. Cybenko, 

William I. Grosky, Steve McConnell, Daniel E.
O’Leary, Ken Sakamura, Munindar P. Singh, James

J. Thomas, Yervant Zorian

PUBLICATIONS BOARD

Sallie Sheppard (vice president), Sorel Reisman
(MOC chair), Rangachar Kasturi (TOC chair), Jon
Butler (POC chair), Angela Burgess (publisher),

Laurel Kaleda (IEEE representative), Jake Aggarwal,
Laxmi Bhuyan, Lori Clarke, Alberto del Bimbo, Mike

Liu, Mike Williams (secretary),  Zhiwei Xu



J u l y / A u g u s t  2 0 0 0 I E E E  S O F T W A R E 7

FROM THE EDITOR

not to be very good because you
weren’t tracking quality. The same ba-
sic argument holds if you’re not track-
ing any one of cost, schedule, quality,
or functionality.

Well-run software projects track
status in numerous quantitative ways—
code, test, and review metrics; task
lists; earned-value analysis; and con-
trol charts—in addition to more
common techniques such as mile-
stone reviews and management by
walking around. Technical workers
typically do not acquire the intellec-
tual tools needed to do this work au-
tomatically; they require education
and training targeted specifically at
the software project manager. 

Risk Management
Software projects are assaulted by

risks arising from shifting user re-
quirements, bleeding-edge technol-
ogy, unstable tools, unreliable con-
tractors, inexperienced personnel,
and many other sources. “Risk” is a
fighting word in much of the busi-
ness world and isn’t uttered aloud
unless a project is already in trouble.
But a software project manager who
doesn’t say “risk” at least a dozen
times a day probably isn’t doing his
job. If the technical manager isn’t ac-
tively managing risk, he isn’t manag-
ing his project. 

Measurement
One key to long-term progress in

a software organization is collecting
historical data to analyze software
quality and productivity. Collecting a
little historical data for each project
can go a long way. If you collect data
about effort (staff months), schedule
(calendar time), program size in lines
of code (or some other measure-
ment), and defect count, you will
have a solid basis for planning future
projects. 

Adding Tools to the Toolbox
Software management skills have

at least as much influence on devel-
opment success as technical skills do.
The Software Engineering Institute

has repeatedly observed that organi-
zations that try to put software engi-
neering discipline in place before
project management discipline are
doomed to fail.5

The common practice of promot-
ing skilled technical workers into
technical management without pro-
viding software-specific management
training just turns good program-
mers into mediocre managers. Good
technical managers are made, not
born, and the software industry needs
to make more of them. Fortunately,
the current skills gap is in an area
that’s relatively easy to correct.
Books such as Tom Gilb’s Principles
of Software Engineering Management
(Addison-Wesley), Tom DeMarco’s
Controlling Software Projects
(Yourdon Press), and my Rapid De-
velopment (Microsoft Press) contain
good advice. You can find project
management advice at the Project
Management Institute’s Web site
(www.pmi.org) and Construx Soft-
ware’s technical reading list (www.
construx.com/ladder).  

References
1. A Guide to The Project Management Body of

Knowledge, PMI Standards Committee, Proj-
ect Management Inst., Newtown Square,
Penn., 1996. 

2. C. Jones, Assessment and Control of Software
Risks, Yourdon Press, Englewood Cliffs, N.J.,
1994.

3. C. Jones, “Patterns of Large Software Sys-
tems: Failure and Success,” IEEE Software,
Vol. 12, No. 2, Mar. 1995, pp. 86–87.

4. B. Hetzel, Making Software Measurement
Work: Building an Effective Measurement
Program, John Wiley & Sons, New York,
1993.

5. R. Burlton, “Managing a RAD Project: Criti-
cal Factors for Success,” Amer. Programmer,
Dec. 1992, pp. 22–29. 

DEPARTMENT EDITORS

Bookshelf: Warren Keuffel, wkeuffel@computer.org

Culture at Work: Karen Mackey, Cisco Systems,
kmackey@best.com

Loyal Opposition: Robert Glass, Computing Trends,
rglass@indiana.edu

Manager: Don Reifer, Reifer Consultants,
dreifer@sprintmail.com

Quality Time: Jeffrey Voas, Reliable Software Tech-
nologies Corp., jmvoas@rstcorp.com

Soapbox: Tomoo Matsubara, Matsubara Consulting,
matsu@computer.org

Softlaw: Larry Graham, Black, Lowe, and Graham,
graham@blacklaw.com

STAFF

Group Managing Editor
Dick Price

Managing Editor 
Dale C. Strok

dstrok@computer.org

Associate Editor
Dennis Taylor

Features Editor
Crystal Chweh

Staff Editor
Jenny Ferrero

Assistant Editors 
Cheryl Baltes and Shani Murray

Magazine Assistants
Dawn Craig and Angela Williams

software@computer.org

Art Director
Toni Van Buskirk

Cover Illustration
Dirk Hagner

Technical Illustrator
Alex Torres

Production Artist
Carmen Flores-Garvey

Executive Director
T. Michael Elliott

Publisher
Angela Burgess

Membership/Circulation
Marketing Manager
Georgann Carter

Advertising Assistant
Debbie Sims

CONTRIBUTING EDITORS

Louise Burnham, Noel Deeley, Nancy Mead, 
Ware Myers, Gil Shif, Pradip Srimani

Editorial: All submissions are subject to editing for clarity,
style, and space. Unless otherwise stated, bylined articles and
departments, as well as product and service descriptions, re-
flect the author’s or firm’s opinion. Inclusion in IEEE Soft-
ware does not necessarily constitute endorsement by the IEEE
or the IEEE Computer Society.

To Submit: Send 2 electronic versions (1 word-processed
and 1 postscript or PDF) of articles to Magazine Assistant, IEEE
Software, 10662 Los Vaqueros Circle, PO Box 3014, Los
Alamitos, CA 90720-1314; software@computer.org. Articles
must be original and not exceed 5,400 words including figures
and tables, which count for 200 words each. 


