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F
or decades, experts have struggled to
define quality. Edwards Deming said
that the only definition of quality that
mattered was the consumer’s.1 Joseph
Juran said that quality was fitness for
use.2 Philip Crosby provided the

strictest definition of quality as “confor-
mance to requirements.”3

Conformance to
requirements

Although they differ on the de-
tails, quality experts agree that
the customer’s view of require-
ments is critically important. For
that reason, I’ve found Crosby’s
definition of “conformance to re-
quirements” to be the most useful
definition in examining software
quality. Taking into account

many software projects’ tendency to elicit
some but not all of the customer’s complete
requirements, “requirements” cannot be in-
terpreted solely as the written requirements.
Requirements must also include implicit re-
quirements—those that the customer as-
sumes regardless of whether the develop-
ment team happens to write them down.
Thus, the working definition of quality that
I use is “conformance to requirements, both
stated and implied.”

The “ities” of software quality
In addition to specific functional require-

ments, software quality is also affected by
common nonfunctional characteristics that
are often referred to as the “ities.” The ities
that affect software’s internal quality (quality

visible to the software’s developers) include
maintainability, flexibility, portability, re-
usability, readability, scalability, testability,
and understandability. The ities that affect
the software’s external quality (visible to the
customer) include usability, reliability, adapt-
ability, and integrity, as well as correctness,
accuracy, efficiency, and robustness.4

Some of these characteristics overlap, but
all have different shades of meaning that are
desired more in some cases and less in others.
The attempt to maximize certain characteris-
tics invariably conflicts with the attempt to
maximize others. Figure 1 presents a sum-
mary of the ways in which external quality
characteristics affect each other. 

These characteristics will be prioritized
differently on different projects, which means
the software quality target is always chang-
ing. Finding an optimal solution from a set of
competing, changing objectives is challeng-
ing, but that’s part of what makes software
development a true engineering discipline. 

From product quality to project
quality 

When software people refer to quality, we
usually refer to the quality of the software
product we are producing. From a manage-
ment perspective, however, customers also
have requirements for projects. I think it’s
reasonable to draw an analogy from prod-
ucts to projects, conceiving project quality as
conformance to requirements, both stated
and implied. Customers’ functional require-
ments for projects draw from a small num-
ber of possible attributes, namely schedule,
resources, cost, and quality of the product
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produced. In some cases, a customer
might prioritize cost higher—in oth-
ers, schedule or product quality. 

Additionally, project quality includes
nonfunctional requirements such as

� Efficiency: Minimal use of sched-
ule, budget, and staff to deliver a
particular software product. 

� Flexibility: The extent to which
the project can be modified to de-
liver software other than that for
which the project was originally
intended or to respond to changes
in project goals. 

� Improvability: The degree to
which project experiences can be
fed back into the project to im-
prove project performance. 

� Predictability: The degree to which
a project’s cost, schedule, and prod-
uct quality outcomes can be fore-
cast in advance.  

� Repeatability: The degree to which
the project after the current project
can be conducted using practices
similar to those used on the cur-
rent project. 

� Robustness: The degree to which
the project will continue to func-
tion in the presence of stressful en-
vironmental conditions.

� Sustainability: The duration for
which a project can continue using
its current practices. 

� Visibility: The ability of a customer
to accurately determine project sta-
tus and progress. 

These project characteristics inter-
play with each other just as the soft-
ware quality attributes do. Figure 2
shows the interactions. In addition to
the interactions shown in Figure 2,
some of these project quality character-
istics tend to support or undermine the
various product characteristics summa-
rized in Figure 1. 

Different projects have different
priorities among efficiency, flexibility,
improvability, and the other character-
istics shown in Figure 2. An estab-
lished business might place high values
on efficiency, predictability, improv-
ability, and repeatability. A start-up
company might place a higher value
on robustness and visibility; it might
not value sustainability and repeata-
bility at all. This suggests that there
isn’t one best definition of project
quality for all projects; the best defi-
nition depends on the project’s con-
sumers and those consumers’ specific
project requirements.  
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Real engineering
One difference between a crafts-

man and an engineer is that a crafts-
man defines quality on his own
terms, whereas an engineer defines
quality through his customers’ eyes.
The craftsman settles into a way of
working that suits him personally,
while the engineer adapts his ap-
proach on each project to best satisfy
his customer’s requirements. 

Software engineering purists ar-
gue that software should always be
produced to the highest level of
quality, by which they mean the
highest levels of product quality.
End-user requirements certainly
should be considered, but the orga-
nization that builds and sells the
software is another consumer whose
requirements must be taken into ac-
count. The product characteristics
that constitute quality to the end
user do not necessarily satisfy the
software-developing organization’s
project quality requirements. 

As Deming pointed out in Out of
the Crisis, different consumers can
have different definitions of quality
for the same product, and this ap-
plies as much to project quality as it
does to product quality. The project

team, manager, and sponsoring orga-
nization can all be considered con-
sumers of a project. A manager
might consider a project to have high
quality if it provides good visibility,
robustness, and repeatability. The
project team might value efficiency,
improvability, and sustainability. The
sponsoring organization might value
predictability and flexibility. 

A manager who factors product
quality into the project plans but ig-
nores project goals takes an abridged
view of software quality. One hall-
mark of engineering work is the con-
stant balancing of trade-offs. With
the extensive trade-off decisions re-
quired to balance both software
product attributes and software pro-
ject goals, software personnel have
abundant opportunities to hone their
engineering skills in this area.
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Figure 2. Interactions between project quality characteristics.


