
C o p y r i g h t © 2 0 0 2 S t e v e n C . M c C o n n e l l . A l l R i g h t s R e s e r v e d . M a r c h / A p r i l 2 0 0 2 I E E E S O F T W A R E 5

from the editor
E d i t o r i n C h i e f : S t e v e M c C o n n e l l � C o n s t r u x S o f t w a r e � s o f t w a r e @ c o n s t r u x . c o m

F
or decades, experts have struggled to
define quality. Edwards Deming said
that the only definition of quality that
mattered was the consumer’s.1 Joseph
Juran said that quality was fitness for
use.2 Philip Crosby provided the

strictest definition of quality as “confor-
mance to requirements.”3

Conformance to
requirements

Although they differ on the de-
tails, quality experts agree that
the customer’s view of require-
ments is critically important. For
that reason, I’ve found Crosby’s
definition of “conformance to re-
quirements” to be the most useful
definition in examining software
quality. Taking into account

many software projects’ tendency to elicit
some but not all of the customer’s complete
requirements, “requirements” cannot be in-
terpreted solely as the written requirements.
Requirements must also include implicit re-
quirements—those that the customer as-
sumes regardless of whether the develop-
ment team happens to write them down.
Thus, the working definition of quality that
I use is “conformance to requirements, both
stated and implied.”

The “ities” of software quality
In addition to specific functional require-

ments, software quality is also affected by
common nonfunctional characteristics that
are often referred to as the “ities.” The ities
that affect software’s internal quality (quality

visible to the software’s developers) include
maintainability, flexibility, portability, re-
usability, readability, scalability, testability,
and understandability. The ities that affect
the software’s external quality (visible to the
customer) include usability, reliability, adapt-
ability, and integrity, as well as correctness,
accuracy, efficiency, and robustness.4

Some of these characteristics overlap, but
all have different shades of meaning that are
desired more in some cases and less in others.
The attempt to maximize certain characteris-
tics invariably conflicts with the attempt to
maximize others. Figure 1 presents a sum-
mary of the ways in which external quality
characteristics affect each other.

These characteristics will be prioritized
differently on different projects, which means
the software quality target is always chang-
ing. Finding an optimal solution from a set of
competing, changing objectives is challeng-
ing, but that’s part of what makes software
development a true engineering discipline.

From product quality to project
quality

When software people refer to quality, we
usually refer to the quality of the software
product we are producing. From a manage-
ment perspective, however, customers also
have requirements for projects. I think it’s
reasonable to draw an analogy from prod-
ucts to projects, conceiving project quality as
conformance to requirements, both stated
and implied. Customers’ functional require-
ments for projects draw from a small num-
ber of possible attributes, namely schedule,
resources, cost, and quality of the product

Real Quality For Real
Engineers
Steve McConnell

6 I E E E S O F T W A R E M a r c h / A p r i l 2 0 0 2

FROM THE EDITOR

produced. In some cases, a customer
might prioritize cost higher—in oth-
ers, schedule or product quality.

Additionally, project quality includes
nonfunctional requirements such as

� Efficiency: Minimal use of sched-
ule, budget, and staff to deliver a
particular software product.

� Flexibility: The extent to which
the project can be modified to de-
liver software other than that for
which the project was originally
intended or to respond to changes
in project goals.

� Improvability: The degree to
which project experiences can be
fed back into the project to im-
prove project performance.

� Predictability: The degree to which
a project’s cost, schedule, and prod-
uct quality outcomes can be fore-
cast in advance.

� Repeatability: The degree to which
the project after the current project
can be conducted using practices
similar to those used on the cur-
rent project.

� Robustness: The degree to which
the project will continue to func-
tion in the presence of stressful en-
vironmental conditions.

� Sustainability: The duration for
which a project can continue using
its current practices.

� Visibility: The ability of a customer
to accurately determine project sta-
tus and progress.

These project characteristics inter-
play with each other just as the soft-
ware quality attributes do. Figure 2
shows the interactions. In addition to
the interactions shown in Figure 2,
some of these project quality character-
istics tend to support or undermine the
various product characteristics summa-
rized in Figure 1.

Different projects have different
priorities among efficiency, flexibility,
improvability, and the other character-
istics shown in Figure 2. An estab-
lished business might place high values
on efficiency, predictability, improv-
ability, and repeatability. A start-up
company might place a higher value
on robustness and visibility; it might
not value sustainability and repeata-
bility at all. This suggests that there
isn’t one best definition of project
quality for all projects; the best defi-
nition depends on the project’s con-
sumers and those consumers’ specific
project requirements.

DEPARTMENT EDITORS

Bookshelf: Warren Keuffel,
wkeuffel@computer.org

Construction: Andy Hunt and Dave Thomas,
Pragmatic Programmers,

{Andy, Dave}@pragmaticprogrammer.com

Country Report: Deependra Moitra, Lucent Technologies
d.moitra@computer.org

Design: Martin Fowler, ThoughtWorks,
fowler@acm.org

Loyal Opposition: Robert Glass, Computing Trends,
rglass@indiana.edu

Manager: Don Reifer, Reifer Consultants,
dreifer@sprintmail.com

Quality Time: Jeffrey Voas, Cigital,
voas@cigital.com

STAFF

Senior Lead Editor
Dale C. Strok

dstrok@computer.org

Group Managing Editor
Crystal Chweh

Associate Editors
Jenny Ferrero and

Dennis Taylor

Staff Editors
Shani Murray, Scott L. Andresen,

and Kathy Clark-Fisher

Magazine Assistants
Dawn Craig

software@computer.org

Pauline Hosillos

Art Director
Toni Van Buskirk

Cover Illustration
Dirk Hagner

Technical Illustrator
Alex Torres

Production Artist
Carmen Flores-Garvey

Executive Director
David Hennage

Publisher
Angela Burgess

Assistant Publisher
Dick Price

Membership/Circulation
Marketing Manager
Georgann Carter

Advertising Assistant
Debbie Sims

CONTRIBUTING EDITORS

Greg Goth, Denise Hurst, Gil Shif, Keri Schreiner,
and Margaret Weatherford

Editorial: All submissions are subject to editing for clarity,
style, and space. Unless otherwise stated, bylined articles
and departments, as well as product and service descrip-
tions, reflect the author’s or firm’s opinion. Inclusion in
IEEE Software does not necessarily constitute endorsement
by the IEEE or the IEEE Computer Society.

To Submit: Send 2 electronic versions (1 word-processed
and 1 postscript or PDF) of articles to Magazine Assistant,
IEEE Software, 10662 Los Vaqueros Circle, PO Box 3014,
Los Alamitos, CA 90720-1314; software@computer.org. Ar-
ticles must be original and not exceed 5,400 words including
figures and tables, which count for 200 words each.

Correctness

Usability

Efficiency

Reliabilty

Integrity

Adaptability

Accuracy

Robustness

⇑

⇓

⇑

⇑

⇓

⇑

⇑

⇑
⇑ Helps ⇓ Hurts

 ⇑

⇑

⇓

⇓

⇓

⇑

⇓

⇑

⇑

⇑

⇓

⇓

⇑

⇑

⇓

⇓

⇑

⇓

⇑

⇓

⇑

⇑

⇑

⇓

 ⇑

⇑

⇓

⇓

⇓

⇓

 ⇑

⇓

⇑

Corr
ec

tne
ss

Usa
bil

ity

Eff
ici

en
cy

Reli
ab

ilty

Int
eg

rity

Ada
pta

bil
ity

Accu
rac

y

Rob
us

tne
ss

How focusing
on the factor
below affects
the factor
to the right

Figure 1. Interactions between product quality external
characteristics.

M a r c h / A p r i l 2 0 0 2 I E E E S O F T W A R E 7

FROM THE EDITOR

Real engineering
One difference between a crafts-

man and an engineer is that a crafts-
man defines quality on his own
terms, whereas an engineer defines
quality through his customers’ eyes.
The craftsman settles into a way of
working that suits him personally,
while the engineer adapts his ap-
proach on each project to best satisfy
his customer’s requirements.

Software engineering purists ar-
gue that software should always be
produced to the highest level of
quality, by which they mean the
highest levels of product quality.
End-user requirements certainly
should be considered, but the orga-
nization that builds and sells the
software is another consumer whose
requirements must be taken into ac-
count. The product characteristics
that constitute quality to the end
user do not necessarily satisfy the
software-developing organization’s
project quality requirements.

As Deming pointed out in Out of
the Crisis, different consumers can
have different definitions of quality
for the same product, and this ap-
plies as much to project quality as it
does to product quality. The project

team, manager, and sponsoring orga-
nization can all be considered con-
sumers of a project. A manager
might consider a project to have high
quality if it provides good visibility,
robustness, and repeatability. The
project team might value efficiency,
improvability, and sustainability. The
sponsoring organization might value
predictability and flexibility.

A manager who factors product
quality into the project plans but ig-
nores project goals takes an abridged
view of software quality. One hall-
mark of engineering work is the con-
stant balancing of trade-offs. With
the extensive trade-off decisions re-
quired to balance both software
product attributes and software pro-
ject goals, software personnel have
abundant opportunities to hone their
engineering skills in this area.

References
1. W. Edwards Deming, Out of the Crisis, MIT

Press, Cambridge, Mass., 2000.
2. J.M. Juran, Juran’s Quality Handbook, Mc-

Graw-Hill, New York, 1998.
3. P.B. Crosby, Quality Is Free: The Art of Mak-

ing Quality Certain, Mentor Books, Denver
Colo., 1992.

4. S. McConnell, Code Complete, Microsoft
Press, Redmond, Wash., 1993.

EDITOR IN CHIEF:
Steve McConnell

10662 Los Vaqueros Circle
Los Alamitos, CA 90720-1314

software@construx.com

EDITOR IN CHIEF EMERITUS:
Alan M. Davis, Omni-Vista

ASSOCIATE EDITORS IN CHIEF

Design: Maarten Boasson, Quaerendo Invenietis
boasson@quaerendo.com

Construction: Terry Bollinger, Mitre Corp.
terry@mitre.org

Requirements: Christof Ebert, Alcatel Telecom
christof.ebert@alcatel.be

Management: Ann Miller, University of Missouri, Rolla
millera@ece.umr.edu

Quality: Jeffrey Voas, Cigital
voas@cigital.com

Experience Reports: Wolfgang Strigel,
Software Productivity Center; strigel@spc.ca

EDITORIAL BOARD

Don Bagert, Texas Tech University
Richard Fairley, Oregon Graduate Institute

Martin Fowler, ThoughtWorks
Robert Glass, Computing Trends

Andy Hunt, Pragmatic Programmers
Warren Keuffel, independent consultant
Brian Lawrence, Coyote Valley Software

Karen Mackey, Cisco Systems
Deependra Moitra, Lucent Technologies, India

Don Reifer, Reifer Consultants
Suzanne Robertson, Atlantic Systems Guild

Dave Thomas, Pragmatic Programmers

INDUSTRY ADVISORY BOARD

Robert Cochran, Catalyst Software (chair)
Annie Kuntzmann-Combelles, Q-Labs

Enrique Draier, PSINet
Eric Horvitz, Microsoft Research

David Hsiao, Cisco Systems
Takaya Ishida, Mitsubishi Electric Corp.

Dehua Ju, ASTI Shanghai
Donna Kasperson, Science Applications International

Pavle Knaflic, Hermes SoftLab
Günter Koch, Austrian Research Centers

Wojtek Kozaczynski, Rational Software Corp.
Tomoo Matsubara, Matsubara Consulting

Masao Matsumoto, Univ. of Tsukuba
Dorothy McKinney, Lockheed Martin Space Systems

Nancy Mead, Software Engineering Institute
Stephen Mellor, Project Technology

Susan Mickel, AgileTV
Dave Moore, Vulcan Northwest

Melissa Murphy, Sandia National Laboratories
Kiyoh Nakamura, Fujitsu

Grant Rule, Software Measurement Services
Girish Seshagiri, Advanced Information Services

Chandra Shekaran, Microsoft
Martyn Thomas, Praxis

Rob Thomsett, The Thomsett Company
John Vu, The Boeing Company

Simon Wright, Integrated Chipware
Tsuneo Yamaura, Hitachi Software Engineering

MAGAZINE OPERATIONS COMMITTEE

George Cybenko (chair), James H. Aylor, Thomas J.
Bergin, Frank Ferrante, Forouzan Golshani, Rajesh
Gupta, Steve McConnell, Ken Sakamura, M. Satya-

narayanan, Nigel Shadbolt, Munindar P. Singh,
Francis Sullivan, James J. Thomas

PUBLICATIONS BOARD

Rangachar Kasturi (chair), Mark Christensen,
George Cybenko, Gabriella Sannitti di Baja, Lee

Giles, Thomas Keefe, Dick Kemmerer,
Anand Tripathi

Efficiency

Flexibility

Improvability

Predictability

Repeatability

Robustness

Sustainability

Visibility

⇑

⇑

⇓

⇓

⇑

⇓

⇑

⇑

⇓

⇓

⇑

⇓

⇑
⇑ Helps ⇓ Hurts

⇑

⇑

⇑

⇓

⇑

⇑

⇑

⇑

⇑

⇑

⇑

⇑

⇑

⇓

⇑

⇑

⇓

⇑

⇑

⇑

⇑

⇑

⇑

⇑

⇓

⇑

⇑

⇑

Eff
ici

en
cy

Fle
xib

ilit
y

Im
pro

va
bil

ity

Pred
ict

ab
ilit

y

Rep
ea

tab
ilit

y

Rob
us

tne
ss

Sus
tai

na
bil

ity

Visi
bil

ity

How focusing
on the factor
below affects
the factor
to the right

Figure 2. Interactions between project quality characteristics.

