
b e s t p r a c t i c e s

1 2 0 C o p y r i g h t (c) 1 9 9 7 S t e v e n C . M c C o n n e l l . A l l R i g h t s R e s e r v e d J U L Y / A U G U S T 1 9 9 7

Prospecting for
programmer’s

gold.

Editor:
Steve McConnell
Construx Software Builders

PO Box 6922
Bellevue, WA 98008

stevemcc@construx.com

The Programmer Writing

s t e v e m c c o n n e l l

IN 1987, FRED BROOKS OBSERVED THAT
“the gap between the best software engineering prac-
tice and the average practice is very wide—perhaps
wider than in any other engineering discipline. A tool
that disseminates good practice would be important”
(“No Silver Bullets: Essence and Accidents of Soft-
ware Engineering,” Computer, April 1987). Contin-
uing Brooks’ line of thought in 1990, the US National
Research Council’s Computer Science and Tech-
nology Board stated that the biggest gains in software
development quality and productivity will come from
disseminating effective practices—codifying, unify-
ing, and distributing existing knowledge via software
engineering handbooks (“Scaling Up: A Research
Agenda for Software Engineering,” Communications
of the ACM, March 1990).

Who should write these handbooks?
In August 1837, Ralph Waldo Emerson deliv-

ered an address that came to be known as “The
American Scholar” (Selections from Ralph Waldo
Emerson, Stephen E. Whicher, ed., Houghton
Mifflin, 1960). It is one of the most inspirational es-
says I have read; moreover, I believe it contains the
answer to the question of who should write these
software handbooks.

EMERSON’S AUTHORS. Most software development
books are written by six kinds of authors: recent re-
tirees, university professors, seminar instructors,
consultants, think-tank developers, and developers
working on production software. People in each of
these groups have valuable contributions to make,
and it would be a mistake to discount any of them.
Recent retirees bring years of experience, insight,
and reflection to their writing. University professors
bring a full awareness of leading-edge research.
Seminar instructors have a chance to test their ma-
terial in front of hundreds or even thousands of stu-
dents before publishing their material in book form.
Consultants see dozens of clients a year, and their
observations can be based on an incredible breadth
of exposure to effective and ineffective software prac-
tices. Think-tank developers at Xerox PARC,
AT&T Bell Labs, and similar environments have
produced some of our best software engineering

technology. But I think that developers working on
production software must shoulder the primary bur-
den of creating these handbooks.

In “The American Scholar,” Emerson draws a
distinction between a thinker and Man Thinking

(which is his synonym for American Scholar). A
thinker is someone whose sole function is to think.
A thinker experiences life secondhand, through other
people’s books, articles, and descriptions of the ac-
tive world. A Man Thinking, on the other hand, is a
robust person who is active in the world, actively en-
gaged in a trade or occupation, who occasionally
pauses for reflection. The Man Thinking has a
strong bias toward action. “The true scholar grudges
every opportunity of action past by as a loss of power.
It is the raw material out of which the intellect molds
her splendid products.” Emerson argues that the di-
rect experience of Man Thinking is critical to genius
and that genius can emanate only from a Man
Thinking, not from a mere thinker.

Emerson says that immersion in the active world
is essential to understanding what other Men
Thinking have written about it. Readers who do not
bring a base of action to their reading will under-
stand little of what they read. But, “When the mind
is braced by labor and invention, the page of what-
ever book we read becomes luminous with manifold
allusion. Every sentence is doubly significant and the
sense of our author is as broad as the world.”

If readers not “braced by labor and invention”
get little out of what they read, writers not braced
by labor and invention can put little into what they
write. As Emerson says, action is essential. Without

The “Man Thinking”
has a strong bias
toward action:
direct experience is
critical to genius.

Continued on page 119

.

I E E E S O FT W A R E 1 1 9

it, thought can never ripen into truth.
Readers instantly know whose words are
loaded with life, and whose are not. “I
learn immediately from any speaker how
much he has already lived, through the
poverty or the splendor of his speech. Life
lies behind us as the quarry from whence
we get tiles and copestones for the ma-
sonry of today. Colleges and books only
copy the language which the field and the
work-yard made.”

MISSING THE BOAT. Thinkers who cannot
write authentically have what I call the
James Fenimore Cooper syndrome.
Cooper was an early American writer who
was fascinated by the American Indians and
wrote several stories about them, including
The Deerslayer and The Last of the Mohicans.
Cooper’s writing was later skewered by the
great American humorist Mark Twain as
being hopelessly inaccurate fantasy (“Feni-
more Cooper’s Literary Offenses” [1895]
in How to Tell a Story and Other Essays,
Oxford Univ. Press, 1996).

In a scene from The Deerslayer, Cooper
has six Indians climb onto a sapling over-
hanging a river to wait for a scow being
hauled upstream by rope. The Indians’ plan
is to jump onto the roof of a cabin on the
scow, which is 90 feet long and 16 feet wide
at its widest point. The six Indians try to
time their jumps onto the cabin roof, but
one falls short of the roof and lands on the
boat’s stern; the remaining five miss the
boat entirely and land in the water.

Twain had been a riverboat pilot, and
he took Cooper to task for his sloppy de-
scription of a subject Twain knew inti-
mately. Twain pointed out the implausi-

bility of a sapling supporting the weight
of six adult men. He then pointed out that
according to Cooper’s description of the
river, a boat one-third the length of
Cooper’s would have had difficulty navi-
gating the twists and turns in the river.

Cooper’s scow would have wedged itself
into a corner halfway through the first
turn. As for the Indians’ jumping, the
maximum speed the scow could be pulled
upstream was about one mile per hour,
which would have given the Indians a
minute and a half to jump onto the boat
and a full minute to jump onto the cabin
roof. That amount of time hardly calls for
precise timing, but Cooper’s Indians man-
aged to miss the cabin anyway. Perhaps
they lost their concentration when they
realized that Cooper’s river at that point
was only two feet wider than the boat;
they could have saved themselves some
trouble by simply stepping onto the boat
as it scraped past them. But, as Twain
says, because Cooper didn’t allow his
Indians to hop on from the shore, their
mishap is his fault, not theirs.

At the 17th International Conference
on Software Engineering, David Parnas
pointed out that papers from earlier con-
ferences that had received awards for being
“most influential” had arguably not been
influential at all (“On ICSE’s Most
‘Influential’ Papers,” Software Engineering
Notes, July 1995). I think the James Feni-
more Cooper syndrome is part of the rea-
son. These papers might influence re-
searchers, but they do not influence
practitioners because, to practitioners, the
methodologies they describe seem about as
authentic as Cooper’s stories.

AUTHENTICITY. Practicing software devel-
opers are every bit as skeptical about soft-
ware development handbooks as Twain
was of Cooper’s prose. Software method-
ology books are seen as theoretical, ap-
plicable only to small projects, hard to
adapt, inefficient, and incomplete. Soft-
ware authors sometimes bemoan the fact
that the average software developer buys
less than one software development book
a year, but the reason for that is not such
a great mystery. Developers will buy books
that have been “braced by labor and in-
vention,” but not books that, like Cooper’s
Indians, miss the boat.

Mark Twain argued that the best fron-
tier adventure stories were written by peo-
ple with keen eyes for detail who had ac-
tually lived on the frontier, and I am

convinced that the best software hand-
books will be based on the work of soft-
ware developers who have recently lived
through production software projects. To
apply Emerson’s point to software engi-

neering, the tiles and copestones of soft-
ware engineering handbooks must come
from The Programmer Writing, from
people who are actively participating on
production software projects and who oc-
casionally take time to reflect on their
work and write about it.

A CALL TO ACTION. If you are actively devel-
oping software, I urge you to write about
your insights. If you have worked on a
project that taught you valuable lessons,
share them—whether they are coding de-
tails, quality assurance practices, more ef-
fective project management, or even a
software development topic that doesn’t
have a name yet. Submit your writing to
IEEE Software or some other magazine,
or fully develop your ideas into a book. If
your insights are stronger than your writ-
ing, find a consultant, seminar instructor,
university professor, or other skilled
writer to be your co-author. You don’t
need to worry that what you have learned
won’t apply to other people’s projects. As
Emerson says, “Success treads on every
right step. For the instinct is sure, that
prompts him to tell his brother what he
thinks. He then learns that in going down
into the secrets of his own mind he has de-
scended into the secrets of all minds. The
deeper he dives into his privatest secretest
presentiment, to his wonder he finds this
is the most acceptable, most public, and
universally true.” ◆

b e s t p r a c t i c e s

s

Practicing software
developers are
every bit as
skeptical about
handbooks as
Twain was of
Cooper’s prose.

Continued from page 120

Developers will not
buy books that, like
Cooper’s Indians,
miss the boat.

.

