atf e ey e ad af j g inf nf nf ey Y f nf nf nf nf nf ey nf

Best Practices

ol°lo

O

S
Q
<
X
>
o
]
[72]
c
Q
(&)
®
Q
(8]
£
[
>
Q
+—
[%2)
[%2)
—
()
S
5
o
g
]
=
g
@)
w
X
>
fus
o]
[%2)
e
@]
o
T
c
c
Q
O
O
=
[}
>
Q
=
(%2}
4
©)
E
o
L

128

Steve McConnell

Problem Programmers

“For me, programming is a head rush. I'm always
working on the edge. When | put software out there,
I don't know if it’s going to work. That's part of the
excitement. If it's not exciting, | don't want to do it.”

“What do | do with a problem programmer?” This
is the question | hear most often in my consulting
work. Stories of problem programmers abound.
Some, like the programmer quoted above, refuse to
check their work carefully. One developer initially re-
fused to follow the project’s design standards in cre-
ating a certain module. After finally being given an
ultimatum, he coded the module—but he wrote the
variable names, function names, and comments in
German. Another developer insisted that he was
making steady progress and that his Microsoft
Windows code was finished; meanwhile he spent
two months exploring the new Apple Newton. When
the time came to integrate his code with the rest of
the team’s work, none of it was done. He had created
some rough prototypes, but nothing was tested, de-
bugged, reviewed, or even remotely ready to be re-
leased. Another belligerent developer had apparently
never heard of egoless programming. Whenever she
found a defect in another programmer’s work, she
would say, “Okay, Mr. Smarty Pants Programmer. If
you're so great, how come | just found a bug in your
code? | guess maybe you're not so smart after all.”

How BAD Is BAD?

In addition to attitudinal differences, significant
productivity differences among programmers have
been well documented. In the first study on the sub-
ject, H. Sackman, WJ. Erikson, and E.E. Grant found
differences of more than 20 to 1 in the time required
by different developers to debug the same problem
(“Exploratory Experimental Studies Comparing
Online and Offline Programming Performance,”
Comm.ACM, Jan. 1968). This was among a group of
programmers who each had at least seven years of
professional experience.

IEEE Software % March/April 1998

This basic result—demonstrating at least 10-to-
1 differences in productivity—has been reproduced
numerous times, but | think it understates the real
productivity differences among practicing pro-
grammers. Tom DeMarco and Timothy Lister con-
ducted a coding war game in which 166 program-
mers were asked to complete the same assignment
(“Programmer Performance and the Effects of the
Workplace,” Proceedings of the 8th International
Conference on Software Engineering, IEEE Computer
Soc. Press, 1985, pp. 268-272). They found that the
programmers exhibited productivity differences of
about5to 1 on the same small project. From a prob-
lem-employee viewpoint, the most interesting re-
sult of the study is that 13 of the 166 programmers
didn't finish the project at all—that’s almost 10 per-
cent of the sample.

In a study with similar findings, Bill Curtis pre-
sented a group of 60 professional programmers
with what he characterized as a “simple” debugging
task (“Substantiating Programmer Variability,”
Proceedings of the IEEE, Vol. 69, No. 7, 1981). In spite
of its simplicity, six programmers weren't able to
complete the task, and data on their performance
was excluded from the study’s results. Curtis ob-
served order-of-magnitude differences among the
programmers who were able to complete the task.

What are the real-world implications of working
with programmers who can't complete their work?
On areal project, “not finishing at all” usually isn't an
option; programmers who didn't finish during the
coding war game or during Curtis's debugging test
would require either huge amounts of additional
time to complete their work or someone else would
have to do it for them.

Low productivity by itself usually isn't the only
problem. Strained to the limits of their abilities
by the coding activity itself, low-productivity

Continued on page 127

Copyright © 1998 Steven C. McConnell. All Rights Reserved.

atf ey e ad af nj vy nf nf ey ey nd nf nf nf ey Gy o

Best Practices

Continued from page 128

programmers are either unable or unwilling to fol-
low project coding conventions or design standards.
They remove few or no defects from their code be-
fore they integrate it with other people’s work, or
before other people are affected by it. They can't es-
timate their work reliably because they don't know
for sure whether they will even finish. Considering
the absence of direct contributions to the project
and the extra work created for the rest of the team,
it's no exaggeration to classify these programmers
as “negative-productivity programmers.” The study
data suggests that about 10 percent of professional
programmers might fall into this category. A team
of seven randomly selected programmers therefore
has about a 50/50 chance of including at least one
negative-productivity programmer.

WHOSE PROBLEM IS IT?

As often as managers ask what to do with prob-
lem programmers, individual team members prob-
ably ask that question more. In a review of 32 man-
agement teams, Carl Larson and Frank LaFasto
found that the most consistent and intense com-
plaint from team members was that their team
leaders were unwilling to confront and resolve
problems associated with poor performance by in-
dividual team members (Teamwork: What Must Go
Right; What Can Go Wrong, Sage, Newbury Park,
Calif,, 1989). They reported, “More than any other
single aspect of team leadership, members are dis-
turbed by leaders who are unwilling to deal di-
rectly and effectively with self-serving or noncon-
tributing team members.” They go on to say that
this is a significant management blind spot be-
cause managers nearly always think their teams
are running more smoothly than the team mem-
bers themselves do.

On one of my projects, one programmer usually
arrived at work about 10:30. He went to lunch be-
tween 12:00 and 1:30, he left the office to work out
at a health club between 3:00 and 4:30, and he left
work by 6:00. The project team members were well
aware of the problem, and after a few months com-
plained to the project manager. The project man-
ager eventually imposed ‘core hours” that required
all team members to be at the office between 9:30
and 3:30. (The problem programmer threw a shout-
ing tantrum and complained about the “abusive
Draconian measures” that were being used to im-
pose unfair restrictions on his personal liberties.)

WARNING SIGNS

Problem programmers are easy to identify if you
know what to look for.

¢ They cover up theirignorance rather than try-
ing to learn from their teammates. They actively re-
sist having teammates review their designs or code.

¢ They are territorial. “No one else can fix the
bugs in my code. I'm too busy to fix them now, but
I'll get to them next week.” They'll keep files checked
out of source code control exclusively for weeks at
a time even when that prevents their teammates
from doing their work.

¢ They grumble about team decisions and con-
tinue to revisit old discussions long after the team
has moved on. “I still think we ought to go back and
change the design we were talking about two
months ago. The one we picked isn't going to work.”

CUTTING YOUR LOSSES

If your organization permits it, here are three
solid reasons to simply remove the negative-pro-
ductivity programmer from the team.

¢ It’srare to see amajor problem caused by lack
of skill. It's nearly always attitude, and attitudes are
hard to change. If the problem is caused by lack of
ability, that is even harder to change.

+ The longer you keep a disruptive person
around, the more legitimacy that person will gain
in the eyes of other groups and managers, the more
other people’s work will be affected, the more code
that person will be responsible for. Overall, the
harder it will be to remove him from the team.

+ Some managers say that they have never re-
gretted firing anyone. They’'ve only regretted not
doing it sooner.

You might worry about losing ground if you re-
place a team member, but on almost any size pro-
jectyou'll more than make up for the lost ground by
eliminating a person who's working against the rest
of the team.

PREVENTION

One of the best means of detecting problem
programmers is by holding early design and code
reviews. You can identify team members who don't
want to share their work, who won't accept team

Continued on page 126

March/April 1998 ,& IEEE Software

127

A 1 o o G o 1 o o

126

MODULAR SECURITY TOOLKIT

Frontier Technologies' e-Lock v.2 Toolkit is de-
signed to ease integration of secure messaging, se-
curity management, and IP security for a myriad of
applications. Developers, integrators, or consultants
can use the toolkit to incorporate security into e-
mail clients, firewalls, remote access solutions, and
other applications. The e-Lock v.2 Toolkit is based
upon several standards, including Secure
Multipurpose Internet Mail (S/MIME), Public Key
Cryptography Standards, and IP Security. The toolkit
consists of several components.

¢ The e-Lock Secure Messaging Toolkit's modu-
lar, standards-based secure messaging lets devel-
opers build secure capabilities into any type of mes-
saging application. The toolkit provides developers
with the flexibility to add secure protocol processing
modules as Internet security standards become
available over time. The e-Lock Secure Messaging
Toolkit provides interfaces to both a standard MIME
processing engine and security protocol modules
specific to different secure messaging standards.
The toolkit’s modular architecture supports multi-
ple Secure Protocol Modules (SPM), RFC 822, MIME,
and S/MIME processing capabilities as well as C API
and COM interfacing mechanisms and support for
the latest MIME and S/MIME specifications.

¢ The e-Lock PKI Client Toolkit provides an inter-
face into the key and certificate management of the
e-Lock v.2 public key infrastructure. The e-Lock PKI
Client Toolkit is an API to the standard e-Lock PKI
Client that gives developers the ability to integrate
all of the capabilities of the e-Lock PKI Client into
their applications.

¢ e-Lock VPN Toolkit provides IP Security func-
tionality via the Authentication Header and
Encapsulated Security Protocol for IP Security. It as-
sists security administrators during the installation
of IP Security on their client desktops with the cor-
rect documentation, binaries, and so on.

Alsoincluded in the e-Lock v.2 suite are the e-Lock
Desktop and the e-Lock Director, which support dig-
ital signatures, encryption, and public key infra-
structure. The e-Lock Desktop application can pro-
tect sensitive documents and files by digitally signing
and/or encrypting them for personal use or for com-
municating with others. The e-Lock Director lets se-
curity administrators maintain and manage the e-
Lock Public Key Infrastructure. Security administrators
may use the e-Lock Director for managing user reg-
istration, key and certificate maintenance, public key

IEEE Software ,& March/April 1998

directory, certificate revocation, certificate validation,
automated key backup, key recovery, and automated
key portability services.

The e-Lock Toolkit v.2 includes the e-Lock Secure
Messaging Toolkit, the e-Lock PKI Client Toolkit, and
the e-Lock VPN Toolkit. The e-Lock Toolkit v.2 costs
$1,000. Contact Frontier at (800) 929-3054 or, outside
the US, at (414) 241-4555, fax (414) 241-7084; info@
frontiertech.com; http.//www.frontiertech.com. [1

aaaialaayayayela

Best Practices

Continued from page 127

mates' suggestions, who won't take the time to re-
view other team members’' work—in short, team
members who are generally uncooperative.

If this early detection of problem employees fails,
reviews provide a secondary benefit of lessening
the dependence on any single developer. One prob-
lem typically associated with problem programmers
is that no one else understands their designs or
code. Through design and code reviews, you'll have
at least two people on the team who are familiar
with every part of the program. If you find a devel-
oper on your team who won't participate in reviews,
treat that as an unacceptable risk to the project.
Insist that the developer participate in reviews, or
let him go.

FOR THE GOOD OF THE TEAM

Tolerating even one problem programmer hurts
the morale and productivity of good developers.
Problem programmers are often viewed as having
“low productivity,” but both software research and
software experience suggest that such an assess-
ment is too optimistic. Next time you need to im-
prove productivity, don't look for what you can add,
look for what you can take away. 0

