
C o p y r i g h t © 2 0 0 1 S t e v e n C . M c C o n n e l l . A l l R i g h t s R e s e r v e d . M a y / J u n e 2 0 0 1 I E E E S O F T W A R E 5

from the editor

An Ounce of Prevention
Steve McConnell

E d i t o r i n C h i e f : S t e v e M c C o n n e l l ■ C o n s t r u x S o f t w a r e ■ s o f t w a r e @ c o n s t r u x . c o m

“A
stitch in time saves nine,” the old
saying goes. “An ounce of preven-
tion is worth a pound of cure.” In
software, these expressions translate
into the common observation that
the longer a defect stays in process,

the more expensive it is to fix.1 Industry reports
about the magnitude of the cost increase have
varied over the years. The highest ratio I’ve

seen published came from Barry
Boehm and Philip Papaccio in
1988.2 They reported that require-
ments defects that made their way
into the field could cost 50 to 200
times as much to correct as defects
that were corrected close to the
point of creation. Of course, “50 to
200 times” is a rough average, and
in the worst cases, the sky is the
limit for defect costs—literally. The
US space program had two high-

profile failures in 1999: in both, correcting a
defect “in the field” was not possible, and the
software errors that went undetected until the
software was in the field ended up costing hun-
dreds of millions of dollars.

I’ve previously presented a rough rule of
thumb that early, upstream defects generally
cost 10 to 100 times as much to remove late
downstream as they do to remove close to the
point where they are created.1 These observa-
tions have been used to justify a focus on up-
stream quality assurance activities such as ex-
tensive requirements work, design work, and
technical reviews.

These old sayings and rules of thumb have
come under attack in recent years. Some people
claim that software defects aren’t as expensive to
correct as they used to be; costs don’t increase as
quickly as they used to. In other words, an ounce
of prevention is not worth a pound of cure, but

perhaps only an ounce of cure.3 Some claim that
we are expending more effort on prevention than
we would by fixing the defects later—that we’re
spending a pound of prevention to avoid an
ounce of cure.

Old support for an old saying
One common project dynamic is to cut cor-

ners because “we’re only 30 days from ship-
ping.” If you’re in a hurry, for example, you
might decide that you don’t have time to de-
sign and code a separate, completely clean
printing module. So you piggyback printing
onto the screen display module. You know
that’s a bad design that won’t be extensible or
maintainable, but you don’t have time to do
the right design.

Three months later, when the product still
hasn’t shipped, those cut corners come back to
haunt you. You find that the people using the
prerelease software are unhappy with printing,
and the only way to satisfy their requests is to
significantly extend the printing functionality,
which can’t be done with the piggybacked ver-
sion. Unfortunately, in the three months since
you took the shortcut, the printing functionality
and the screen display functionality have be-
come thoroughly intertwined. Redesigning
printing and separating it from the screen dis-
play is now a tough, time-consuming, error-
prone operation.

We have understood the dynamic in play in
this example at least since the 1970s when
IBM observed that software quality and soft-
ware schedules were related. It found that the
products with the lowest defect counts were
also the products with the shortest schedules.4

Work on a software project generally follows
a pattern of a small number of high-leverage up-
stream decisions providing the basis for a much
larger number of lower-leverage downstream

6 I E E E S O F T W A R E M a y / J u n e 2 0 0 1

FROM THE EDITOR

decisions. Thus we make high-leverage
requirements decisions that provide the
basis for medium-leverage design deci-
sions, which in turn provide the basis
for low-leverage code, test-case, and
end-user-documentation decisions.

A small mistake in upstream work
can affect large amounts of downstream
work. A change to a single sentence in a
requirements specification can imply
changes in hundreds of lines of code
spread across numerous classes or mod-
ules, dozens of test cases, and numerous
pages of end-user documentation.

Capers Jones reports that reworking
defective requirements, design, and code
typically consumes 40 to 50 percent or
more of the total cost of most software
projects and is the single largest cost dri-
ver.5 Tom Gilb reports that about half of
all defects usually exist at design time,6

which is confirmed by Jones’s data. If
half of all defects are upstream defects,
you should be able to save effort by de-
tecting defects earlier than system test-
ing. Jones reports that, as a rule of
thumb, every hour you spend on techni-
cal reviews upstream will reduce your
total defect repair time from three to ten
hours; that is, one ounce of prevention is
worth three to ten ounces of cure.7

Has this dynamic changed in recent
years? Recent data from Hughes Air-
craft shows that the average require-
ments defect still takes 10 times as much
effort to correct during system testing as
it does during requirements analysis.8

The dynamics of defect-cost increase
are inherent in the nature of software
engineering work. It doesn’t matter
whether the project follows an old-
fashioned waterfall life-cycle model or
uses a cutting-edge iterative approach—
design, code, test cases, and documenta-
tion will have dependencies upon re-
quirements regardless of whether the
project is done all at once or divided
into numerous incremental releases.

Overall, I see no indication either
from industry data or analysis that the
dynamics of defect-cost increase have
changed in recent years.

What does that ounce of
prevention look like?

While the underlying dynamic of
defect-cost increase has not changed,

our understanding of how to detect up-
stream defects has improved consider-
ably. Not too many years ago, we
thought that the best way to detect re-
quirements defects was to capture an
exhaustive set of requirements in a
monolithic requirements specification
and then to subject that specification to
intensive reviews. Although industry
data suggests that this approach is
cost-effective compared to the alterna-
tive of jumping straight into coding
and then fixing requirements defects
at construction time, we now know of
numerous alternatives that are often pref-
erable to the monolithic-requirements-
specification approach:

■ Involve end users as early as possible.
Several studies have found that end-
user involvement is key to stable
requirements and software project
success.9

■ Create a throwaway prototype. Cre-
ate a throwaway UI and put the
prototype in front of real end users.
Get feedback. Revise the prototype
until the user is excited about the
system. Then build the system. This
approach correlates with good re-
quirements stability and low system
cost.5

■ Deliver the software incrementally.
Write production code for a small
amount of the system. Put that
functionality in front of the user.
Revise the requirements, design, and
code until the user is excited about
the system. This approach does not
entirely eliminate the defect-cost in-
crease dynamic, but it shortens the
feedback loop from requirements to
user feedback in a way that reduces
the number of downstream depen-
dences that will be based on erro-
neous upstream work. This sort of
incremental delivery approach corre-
lates with high user satisfaction and
lower total development costs.1,6

■ Conduct a requirements workshop.
Fast requirements elicitation tech-
niques such as joint application de-
velopment sessions are an effective
way to shorten the time required to
collect accurate requirements while
simultaneously reducing require-
ments volatility downstream.5

DEPARTMENT EDITORS

Bookshelf: Warren Keuffel,
wkeuffel@computer.org

Country Report: Deependra Moitra,
d.moitra@computer.org

Design: Martin Fowler, ThoughtWorks,
fowler@acm.org

Loyal Opposition: Robert Glass, Computing Trends,
rglass@indiana.edu

Manager: Don Reifer, Reifer Consultants,
dreifer@sprintmail.com

Quality Time: Jeffrey Voas, Cigital,
voas@cigital.com

STAFF

Group Managing Editor
Crystal Chweh

Senior Lead Editor
Dale C. Strok

dstrok@computer.org

Associate Lead Editors
Jenny Ferrero and

Dennis Taylor

Staff Lead Editor
Shani Murray

Staff Editor
Scott Lorenz Andresen

Magazine Assistant
Dawn Craig

software@computer.org

Art Director
Toni Van Buskirk

Cover Illustration
Dirk Hagner

Technical Illustrator
Alex Torres

Production Artists
Carmen Flores-Garvey and Larry Bauer

Acting Executive Director
Anne Marie Kelly

Publisher
Angela Burgess

Membership/Circulation
Marketing Manager
Georgann Carter

Advertising Assistant
Debbie Sims

CONTRIBUTING EDITORS

Greg Goth, Kirk Kroeker, Nancy Mead,
Ware Myers, Judy Shane,

Margaret Weatherford

Editorial: All submissions are subject to editing for clarity,
style, and space. Unless otherwise stated, bylined articles
and departments, as well as product and service descrip-
tions, reflect the author’s or firm’s opinion. Inclusion in
IEEE Software does not necessarily constitute endorsement
by the IEEE or the IEEE Computer Society.

To Submit: Send 2 electronic versions (1 word-processed
and 1 postscript or PDF) of articles to Magazine Assistant,
IEEE Software, 10662 Los Vaqueros Circle, PO Box 3014,
Los Alamitos, CA 90720-1314; software@computer.org. Ar-
ticles must be original and not exceed 5,400 words including
figures and tables, which count for 200 words each.

M a y / J u n e 2 0 0 1 I E E E S O F T W A R E 7

FROM THE EDITOR

■ Perform use case analysis. Rather
than being satisfied with the users’
first explanation of what they want
a system to do, examine the system’s
expected usage patterns to better
understand users’ real needs.

■ Create the user manual first. Some
organizations have had good suc-
cess creating their user manuals as a
substitute for or supplement to a
traditional requirements specifica-
tion. End users seem to be better able
to understand the contents of a user
manual than a traditional require-
ments specification, and requirements
elicitation goes more smoothly.

New twists on old sayings
Software engineering advances by

periodically reexamining questions that
we think we’ve already answered. An
ounce of prevention is still generally
worth a pound of cure, but some recent
developments have improved the
“ounces of prevention” at our dis-
posal. I find it encouraging that so

many good techniques have emerged in
the past few years.

References
1. S. McConnell, Rapid Development, Microsoft

Press, Redmond, Wash., 1996.
2. B.W. Boehm and P.N. Papaccio, “Understand-

ing and Controlling Software Costs,” IEEE
Trans. Software Eng., vol. 14, no. 10, Oct.
1988, pp. 1462–1477.

3. K. Beck, Extreme Programming Explained:
Embrace Change, Addison-Wesley, Reading,
Mass., 2000.

4. C. Jones, Applied Software Measurement:
Assuring Productivity and Quality, 2nd ed.,
McGraw-Hill, New York, 1997.

5. C. Jones, Estimating Software Costs,
McGraw-Hill, New York, 1998.

6. T. Gilb, Principles of Software Engineering
Management, Addison-Wesley, Wokingham,
U.K., 1988.

7. C. Jones, Assessment and Control of Software
Risks, Yourdon Press, Englewood Cliffs, N.J.,
1994.

8. R.R. Willis et al., Hughes Aircraft’s Wide-
spread Deployment of a Continuously Im-
proving Software Process, tech. report
CMU/SEI-98-TR-006, Software Eng. Inst.,
Carnegie Mellon Univ., Pittsburgh, 1998.

9. Charting the Seas of Information Technology,
tech. report, The Standish Group, Dennis,
Mass., 1994.

EDITOR IN CHIEF:
Steve McConnell

10662 Los Vaqueros Circle
Los Alamitos, CA 90720-1314

software@construx.com

EDITOR IN CHIEF EMERITUS:
Alan M. Davis, Omni-Vista

ASSOCIATE EDITORS IN CHIEF

Design: Maarten Boasson, Quaerendo Invenietis
boasson@science.uva.nl

Construction: Terry Bollinger, Mitre Corp.
terry@mitre.org

Requirements: Christof Ebert, Alcatel Telecom
christof.ebert@alcatel.be

Management: Ann Miller, University of Missouri, Rolla
millera@ece.umr.edu

Quality: Jeffrey M. Voas, Cigital
voas@cigital.com

EDITORIAL BOARD

Don Bagert, Texas Tech University
Andy Bytheway, Univ. of the Western Cape
Richard Fairley, Oregon Graduate Institute

Martin Fowler, ThoughtWorks
Robert Glass, Computing Trends

Natalia Juristo, Universidad Politécnica de Madrid
Warren Keuffel, independent consultant
Brian Lawrence, Coyote Valley Software

Karen Mackey, Cisco Systems
Stephen Mellor, Project Technology

Deependra Moitra, Lucent Technologies, India
Don Reifer, Reifer Consultants

Wolfgang Strigel, Software Productivity Centre
Karl Wiegers, Process Impact

INDUSTRY ADVISORY BOARD

Robert Cochran, Catalyst Software, chair
Annie Kuntzmann-Combelles, Q-Labs

Enrique Draier, PSINet
Eric Horvitz, Microsoft Research

David Hsiao, Cisco Systems
Takaya Ishida, Mitsubishi Electric Corp.

Dehua Ju, ASTI Shanghai
Donna Kasperson, Science Applications International

Pavle Knaflic, Hermes SoftLab
Günter Koch, Austrian Research Centers

Wojtek Kozaczynski, Rational Software Corp.
Tomoo Matsubara, Matsubara Consulting

Masao Matsumoto, Univ. of Tsukuba
Dorothy McKinney, Lockheed Martin Space Systems

Susan Mickel, AgileTV
Dave Moore, Vulcan Northwest

Melissa Murphy, Sandia National Laboratories
Kiyoh Nakamura, Fujitsu

Suzanne Robertson, Altantic Systems Guild
Grant Rule, Software Measurement Services

Girish Seshagiri, Advanced Information Services
Chandra Shekaran, Microsoft

Martyn Thomas, Praxis
Rob Thomsett, The Thomsett Company

John Vu, The Boeing Company
Simon Wright, Integrated Chipware

Tsuneo Yamaura, Hitachi Software Engineering

MAGAZINE OPERATIONS COMMITTEE

Sorel Reisman (chair), James H. Aylor, Jean Bacon,
Thomas J. Bergin, Wushow Chou, William I.

Grosky, Steve McConnell, Daniel E. O’Leary, Ken
Sakamura, Munindar P. Singh, Francis Sullivan,

James J. Thomas, Yervant Zorian

PUBLICATIONS BOARD

Rangachar Kasturi (chair), Angela Burgess (pub-
lisher), Jake Aggarwal, Laxmi Bhuyan, Mark Chris-

tensen, Lori Clarke, Mike T. Liu, Sorel Reisman,
Gabriella Sannitti di Baja, Sallie Sheppard, Mike

Williams, Zhiwei Xu

July/August ‘01:
Fault Tolerance

September/October ‘01:
Benchmarking Software Organizations

November/December ‘01:
Extreme Programming Update

January/February ‘02:
Building Security from the Ground Up

March/April ‘02:
The Engineering of Internet Software

U p c o m i n g T o p i c s

