
6 I E E E S o f t w a r e J u l y / A u g u s t 1 9 9 9 Copyright 1999 Steven C. McConnell. All Rights Reserved.

F r o m t h e E d i t o r

Steve McConnell

Open-source software presents an approach that
challenges traditional, closed-source approaches.
Post your company’s source code on the Internet for
everyone to see? It seems crazy. But does the open-
source approach work? No question about it. It al-
ready has worked on Linux, Apache, Perl, Sendmail,
and other programs, and, according to open-source
advocates, the approach continues to work mar-
velously. They will tell you that the software it pro-
duces is more reliable than closed-source programs,
and defect fix times are remarkably short. Large com-
panies such as Dell, IBM, Intel, Oracle, and SAP seem
to agree. They have embraced open source’s most
famous program, Linux, and the Linux development
community in particular sets an energetic example
for the rest of the world to follow.

Considering that open source is an obvious suc-
cess, the most interesting software engineering
questions concern open source’s future. Will the
open-source development approach scale up to pro-
grams the size of Windows NT (currently at least four
times as large as the largest estimate for Linux)? Can
it be applied to horizontal-market desktop applica-
tions as effectively as it has been applied to systems
programs? Should you use it for your vertical-mar-
ket applications? Is it better than typical closed-
source approaches? Is it better than the best closed-
source approaches? After a little analysis, the
answers will become clear.

THE SOURCE OF OPEN SOURCE’S
METHODOLOGY

Open-source software development creates
many interesting legal and business issues, but in

this column I’m going to focus on open source’s soft-
ware development methodology.

Methodologically, open source’s best-known el-
ement is its use of extensive peer review and de-
centralized contributions to a code base. A key in-
sight is that “given enough eyeballs, all bugs are
shallow.”The methodology is driven mainly by Linus
Torvalds’example: Create a kernel of code yourself;
make it available on the Internet for review; screen
changes to the code base; and, when the code base
becomes too big for one person to manage, dele-
gate responsibility for major components to trusted
lieutenants.

The open-source methodology hasn’t been cap-
tured definitively in writing. The single best des-
cription is Eric Raymond’s “The Cathedral and the
Bazaar”paper, and that is sketchy at best (http://www.
tuxedo.org/~esr/writings/cathedral-bazaar/cathe-
dral-bazaar.html). The rest of open source’s method-
ology resides primarily in the informal legend, myth,
and lore surrounding specific projects like Linux.

BUG ME NOW OR BUG ME LATER

In Open Sources: Voices from the Open Source
Revolution (O’Reilly, 1999), Paul Vixie points out that
open-source projects use extensive field testing and
unmatched code-level peer review. According to
Vixie, open-source projects typically have sketchy
marketing requirements, no system-level design, lit-
tle detailed design, virtually no design documenta-
tion, and no system-level testing. The emphasis on
code-level peer review gives the typical open-source
project a leg up on the average closed-source pro-
ject, which uses little or no review. But consideringE

D
IT

O
R

-I
N

-C
H

IE
F

:
St

ev
e

M
cC

o
n

n
el

l•
C

o
n

st
ru

x
So

ft
w

ar
e

 •
so

ft
w

ar
e@

co
n

st
ru

x.
co

m

Open-Source
Methodology:
Ready for Prime Time?

J u l y / A u g u s t 1 9 9 9 I E E E S o f t w a r e 7

how ineffective the average project is, comparing
open-source projects to the “average”closed-source
project sets a pointless standard of comparison.
Leading-edge organizations use a combination of
practices that produce better quality, shorter sched-
ules, and lower development costs than average,
and software development effectiveness at that
level makes a more useful comparison.

One of the bedrock realities of software develop-
ment is that requirements and design defects cost
far more to correct at coding or system testing time
than they cost to correct upstream. The software in-
dustry has collected reams of data on this phenom-
enon: generally you can expect to spend from 10 to
100 times as much to correct an upstream defect
downstream as you would spend to fix the same de-
fect upstream. (It’s a lot easier to change a line on a
design diagram than it is to change a module inter-
face and all the code that uses that module.) As Vixie
points out, open source’s methodology focuses on
fixing all bugs at the source code level—in other
words, downstream. Error by error, without upstream
reviews, the open-source project will require more
total effort to fix each design error downstream than
the closed-source project will require to fix it up-
stream. This cost is not readily perceived because the
downstream effort on an open-source project is
spread across dozens or hundreds of geographically
distributed people.

The implications of open source’s code-and-fix ap-
proach might be more significant than they at first
appear. By the time Linux came around, requirements
and architecture defects had already been flushed
out during the development of many previous gen-
erations of Unix. Linux should be commended for its
reuse of existing designs and code, but most open-
source projects won’t have such mature, predefined
requirements and architecture at their disposal. To
those projects, not all requirements and architecture
bugs will be shallow.

Open-source advocates claim that giving users
the source code reduces the time needed for down-
stream defect correction—the person who first ex-
periences the problem can also debug it. But they
have not published any data to support their asser-
tion that this approach reduces overall defect cor-
rection costs. For this open-source approach to work,
large numbers of users have to be both interested in
and capable of debugging source code (operating
system code, if the system in question is Linux), and
obviously doesn’t scale beyond a small cadre of

highly motivated programmers.
By largely ignoring upstream defect removal and

emphasizing downstream defect correction, open
source’s methodology is a step backwards—back to
Code and Fix instead of forward to more efficient,
early defect detection and correction. This bodes
poorly for open source’s ability to scale to projects
the size of Windows NT or to brand-new technolo-
gies on which insufficient upstream work can easily
sink a project.

NOT ALL EYEBALLS ARE SHALLOW

Open-source advocates emphasize the value of
extensive peer review. Indeed, peer reviews have es-
tablished themselves as one of
the most useful practices in
software engineering. Industry-
leading inspection practices
usually limit the number of re-
viewers to five or six, which is
sufficient to produce software
with close to zero defects on
closed-source projects (Watts
Humphrey, Managing the Software Process, Addison
Wesley Longman, 1989). The question for open
source is, How many reviewers is enough, and how
many is too many? Open source’s typical answer is,
“Given enough eyeballs, all bugs are shallow.” The
more the merrier.

About 1,200 programmers have contributed bug
fixes and other code to Linux. What this means in
practice is that if a bug is reported in Linux, a couple
dozen programmers might begin looking for it, and
many bugs are corrected within hours. From this,
open-source advocates conclude that large numbers
of reviewers lead to “efficient” development.

This answer confuses “fast” and “effective” with
“efficient.”To one of those people, the bug will turn
out to be shallow. To the rest, it won’t be shallow,
but some people will spend time looking for it and
trying to fix it nonetheless. That time isn’t ac-
counted for anywhere because many of those pro-
grammers are donating their time, and the paid
programmers don’t track their effort in any central
location. Having several dozen people all looking
for the same bug may indeed be fast and effective,
but it is not efficient. Fast is having two dozen peo-
ple look for a bug for one day for a total cost of 24
person-days. Efficient is having one person look for

To most open-source
projects, not all
requirements and
architecture bugs
will be shallow.

Question: Have any of you ever experienced the
following?

You are part of a new software development pro-
ject. First, estimates are made of how much time it will
take to develop the software. Next, the latest design
tools and techniques are used to lay out the structure

of the software. The completed graphical design,
which fills several thick volumes, is handed over to a
team of programmers who then begin coding furi-
ously. After the coding effort is about 90 percent com-
plete, the detailed metrics collected throughout the
project indicate that it will be the most timely, well-

8 I E E E S o f t w a r e J u l y / A u g u s t 1 9 9 9

a bug eight hours a week for a month for a total cost
of four person-days.

ECONOMIC SHELL GAME

A key question that will determine whether open
source applies to development of more specialized
applications (for example, vertical-market applica-
tions) is, Does the open-source methodology reduce
development costs overall, or does it just push effort
into dark economic corners where it’s harder to see?
Is it a better mousetrap or an economic shell game?

Considering open source’s focus on downstream
defect correction with significantly redundant peer
reviews, for now the approach looks more like a shell
game than a better mousetrap. It is appealing at first
glance because so many people contribute effort
that is free or unaccounted for. The results of this ef-
fort are much more visible than the effort itself. But
when you add up the total effort contributed—both
seen and unseen—open source’s use of labor looks
awfully inefficient.

Open source is most applicable when you need to
trade efficiency for speed and efficacy. This makes it
applicable to mass-distribution products like oper-
ating systems where development cost hardly mat-
ters and reliability is paramount. But it also suggests
that open source will be less applicable for vertical-
market applications where the reliability require-
ments are lower, profit margins are slim enough that
development cost does matter, and it’s impossible
to find 1,200 people to volunteer their services in
support of your application.

ONE-HIT WONDER OR FORMIDABLE
FORCE?

The open-source movement has not yet put
its methodology under the open-source review
process. The methodology is currently so loosely
defined that it can hardly even be called a
“methodology.” At this time, the strength of the
open-source approach arises largely from its mas-
sive code-level peer review, and little else. For open
source to establish itself as a generalizable ap-
proach that applies to more than a handful of pro-
jects and that rises to the level of the most effec-
tive closed-source projects, it needs to fix four
major problems:

♦ Create a central clearinghouse for the open-
source methodology so it can be fully captured
and evolved.

♦ Kick its addiction to Code and Fix.
♦ Focus on eliminating upstream defects earlier.
♦ Collect and publish data to support its claims

about the effectiveness of the open-source devel-
opment approach.

None of these weaknesses in open source’s cur-
rent development practices are fatal in principle, but
if the methodology can’t be evolved beyond its cur-
rent kludgy practices, history will record open
source’s development approach as a one-hit won-
der. If open source can focus the considerable en-
ergy at its disposal into defining and using more ef-
ficient development practices, it will be a formidable
force indeed. ❖

Response

Open-Source Methods:
Peering Through the Clutter
Terry Bollinger, Russell Nelson, Karsten M. Self, and Stephen J. Turnbull

planned project ever completed by your organization.
The integrators and testers then start putting all the
code together—and discover to their surprise that the
resulting system is just bit fodder for the next carniv-
orous Internet worm.

At that point, two or three experienced pro-
grammers take over all the real work. They use the
bit fodder version as a sort of flabby prototype from
which they can learn lessons
about what not to do. After a cou-
ple of months of furious (and un-
scheduled) coding, they produce
a passably working prototype—
which management immediately ships to the cus-
tomer as the first released version. Amazingly, the
metrics previously attached to the bit fodder version
are magically reassigned to the new prototype.
Blame for not meeting schedule is assigned to the
small team of experienced programmers who pro-
duced the prototype, of course, since they clearly be-
haved in an uncontrollable fashion.

The customer is not happy, but the first release
(that is, the prototype) at least does something
akin to what was ordered. The managers are not
happy, but at least they have great metrics to prove
how well they managed the project—as well as fur-
ther proof of how headstrong programmers can
mess up good schedules. The experienced pro-
grammers who created the working prototype are
not very happy, either. They get most of their sat-
isfaction from knowing that only their work pro-
duced anything useful.

Now, here is what open source really does: It gets
rid of everything in the above story except for the
last sentence.

In short, open-source methods cut though the
clutter of overly hyped design methods, three-letter
management fads, eye-of-the-newt metrics, brain-
free programming, and managerial winking and
nodding that are at the heart of so much of what
sneaks by under the moniker of “software engineer-
ing.” Open source simply demonstrates that there
might be cleaner (and better) ways to do such things.

THE OPEN-SOURCE RAZOR

Is that to say that open source is some sort of
total panacea for the future development of soft-
ware? Of course not! Steve McConnell’s essay aptly
points out that, at present, open source scarcely

even qualifies as a “methodology.” It is more like a
set of principles that define the absolute minimal
process by which a large group of people can pro-
duce high-quality software. Such a minimalist
methodology has its own merits, however. If noth-
ing else, it acts as a sort of Occam’s Razor for the rest
of software engineering. Instead of asking, “How
many more controls will this project need before it

becomes predictable?” the Open-Source Razor de-
mands that a new question be asked: “Can you jus-
tify adding a new control, method, or metric to the
process when open-source methods already work
fine without it?”

EFFICIENCY, EFFICIENCY… WHO HAS
THE EFFICIENCY?

With all that said, let’s take a look at this curiously
minimalist methodology from another perspective:
efficiency. Steve McConnell’s essay makes the point
that in traditional software development, the cost
of finding and fixing a design defect increases dra-
matically as you move farther out into the life cycle
of the software. Since open-source methods of in-
spection and bug fixing operate entirely at the
source code level, doesn’t that prove that open
source will be vastly less efficient than traditional
methods that catch defects as early as possible in
the development process?

It’s an excellent point, but it relies on the as-
sumption that costs in open source work the same
way as in traditional methodologies. This requires a
closer examination of late-capture defect costs.

One such factor is that late fixes can affect large
chunks of the overall software design, especially
software that is not as modular as it should be.
Another cost factor is the loss of the context of the
original development effort—that is, the people,
environment, and overall set of knowledge under
which the software was originally developed.
Reconstructing this environment can be very diffi-
cult after the project has concluded. Finally, it is
much harder to figure out how erroneous behaviors
correlate to specific code errors when the software
is running in diverse locations with unique environ-

Open source demonstrates that there might
be cleaner (and better) ways to do such things.

J u l y / A u g u s t 1 9 9 9 I E E E S o f t w a r e 9

1 0 I E E E S o f t w a r e J u l y / A u g u s t 1 9 9 9

F r o m t h e E d i t o r

ments. Collectively, such factors make it a very good
idea to catch design errors early in traditional closed-
source development, before the context of the orig-
inal development effort is lost.

THE OPEN-SOURCE SPIRAL MODEL

Open-source projects, however, attempt to ship
out minimally working prototypes at the earliest
possible time. By doing this they begin to receive
feedback on their features and designs very early in

the overall development process. It is this prototype-
based feedback cycle that distinguishes open-
source methods from a simple code-and-fix cycle.
Indeed, open source is more accurately described
as an unusually rapid and iterative form of Barry
Boehm’s famous spiral model of software develop-
ment. Open source is not usually described in this
way simply because the spirals—microspirals, ac-
tually—are wound so tightly together that to an out-
sider the entire effort looks much like a single large,
“simple”coding effort. Inside, however, participants
are vigorously iterating over requirements, design,
coding, and testing activities, all going on within
loops that might take as little as hours to complete.
It is this highly iterative process that lies behind
much of the reliability of open source, because each
new fix can be vigorously rechecked in the subse-
quent loops of the microspiral.

This process avoids the horror-story show-stop-
per bug that only shows up in shipped products.
Only open source has a plan for fixing these bugs in
the environment where they’re discovered.

BUGS, BUGS… WHO’S GOT THE
BUGS?

Another good point that Steve McConnell makes
is that open source can lead to multiple people
working on the same bug. However, there are two
reasons why this effect of redundant bug fixes is
probably not as important in practice as it might
seem on paper.

First, it overlooks the complex personal network

that develops naturally in open-source projects.
Because the source code is fully available and con-
tributions are fully attributed, participants are gen-
erally well aware of who the experts are for a par-
ticular type of bug. Mailing lists are also used to
make these relationships even more explicit. The
overall result is a natural deferring process whereby
most participants immediately realize which sub-
group or person is best suited to fix a particular type
of bug.

Second, the “microcompetition” that occurs
when multiple designers work on a single bug is not

necessarily a bad thing in terms
of overall efficiency of the open-
source process. For example,
poorly coded modules become
like bait when microcompetition

is possible. The weak modules attract many of the
more skillful open-source developers in an effort to
prove which one can come up with the best, most
efficient, and longest-term fix. Especially when ap-
plied over time to many different modules, the re-
sult can be a very solid code base in which everyone
saves time by not having to deal with the conse-
quences of using slow, buggy modules.

SELECTIVE EVOLUTION OF
MODULARITY

Open source also promotes efficiency by en-
couraging the evolution of high-quality modular-
ity. This is a direct result of the decentralized nature
of open-source development, in which only those
source code modules that “make sense” to devel-
opers at remote sites can be efficiently updated by
developers around the globe. Only source code that
is rigorously modular, self-contained, and self-ex-
planatory can meet such an objective. The overall
result is that the decentralized organization of an
open-source project is often mirrored in a finer struc-
ture of modules themselves, all the way down to a
more rigorous standardization of their internal in-
terfaces. While good closed-source organizations
are of course aware of the benefits of good modu-
larity, only open-source methods provide the kinds
of individual incentives though which such prac-
tices can easily flourish and evolve over time. They
also provide a warning about efforts such as
Netscape’s Mozilla that attempt to move weakly
modularized proprietary code into open source. If

Only open source has a plan for fixing bugs
in the environment where they’re discovered.

J u l y / A u g u s t 1 9 9 9 I E E E S o f t w a r e 1 1

the initial product is not already modular, such an
effort is likely to fail before it really gets started.

NEEDED: SYNERGY!

We would like to end this response simply by ap-
plauding the type of synergy between open-source
and traditional development that Steve McConnell
is encouraging here. As demonstrated by the rela-
tionship between the Boehm spiral model and the

open-source microspiral, there are important
lessons for both sides. ❖

Terry Bollinger is an IEEE Software editor; in his spare time, he
works at Mitre. Russell Nelson has made a living off free soft-
ware since 1991. Karsten M. Self was happily programming
SAS and hacking Unix environments when he got bit by the
Linux bug in 1997; he now spends too much time thinking
about how the free-software phenomenon works. Stephen
Turnbull teaches economics in Japan and is professionally
fascinated by the growth of open-source software, even com-
pared with that of Japan. The authors can be reached via
Nelson at nelson@crynwr.com.

EDITORIAL BOARD

Maarten Boasson (Hollandse Signaalapparaten), Terry Bollinger
(MITRE), Andy Bytheway (Univ. of the Western Cape), David Card
(Software Productivity Consortium), Carl Chang (Univ. of Ill., Chicago),
Larry Constantine (Constantine & Lockwood), Christof Ebert (Alcatel
Telecom), Robert Glass (Computing Trends), Lawrence D. Graham
(Christensen, O’Connor, Johnson, & Kindness), Natalia Juristo
(Universidad Politécnica de Madrid), Tomoo Matsubara (Matsubara
Consulting), Nancy Mead (Software Eng. Inst.), Stephen Mellor (Project
Technology), Pradip Srimani (Colorado State Univ.), Wolfgang Strigel
(Software Productivity Centre), Jeffrey M. Voas (Reliable Software
Technologies Corporation), Karl E. Wiegers (Process Impact)

INDUSTRY ADVISORY BOARD

Robert Cochran (Catalyst Software), Annie Kuntzmann-Combelles
(Objectif Technologie), Alan Davis (Omni-Vista), Enrique Draier
(Netsystem SA), Eric Horvitz (Microsoft), Dehua Ju (ASTI Shanghai),
Donna Kasperson (Science Applications Int’l), Günter Koch
(Austrian Research Centers), Wojtek Kozaczynski (Rational
Software Corp.), Karen Mackey (Lockheed Martin), Masao
Matsumoto (Univ. of Tsukuba), Susan Mickel (Rational Univ.),
Deependra Moitra (Lucent Technologies, India), Melissa Murphy
(Sandia), Kiyoh Nakamura (Fujitsu), Grant Rule (Guild of Indepen-
dent Function Point Analysts), Chandra Shekaran (Microsoft),
Martyn Thomas (Praxis), Sadakazu Watanabe (Fukui Univ.)

CONTRIBUTING EDITORS

Ware Myers, Roger Pressman, Ellen Ullman, Mike Yacci

MAGAZINE OPERATIONS COMMITTEE

Gul Agha (chair), James Aylor, Jean Bacon, Wushow Chou, George
Cybenko, William Grosky, Steve McConnell, Daniel E. O’Leary, Ken
Sakamura, Munindar P. Singh, James J. Thomas, Michael R. Williams,
Yervant Zorian

PUBLICATIONS BOARD

Benjamin Wah (chair), Jake Aggarwal, Jon Butler,Alberto del Bimbo,
Ming T. Liu, Nancy Mead, Joseph E. Urban, Zhiwei Xu

Editorial: Send 2 electronic versions (1 word-processed and 1 postscript or PDF) of articles to Managing
Editor, IEEE Software, 10662 Los Vaqueros Cir., PO Box 3014, Los Alamitos, CA 90720-1314; software@
computer.org. Articles must be original and not exceed 5,400 words including figures and tables, which
count for 200 words each. All submissions are subject to editing for clarity, style, and space. Unless oth-
erwise stated, bylined articles and departments, as well as product and service descriptions, reflect the
author’s or firm’s opinion. Inclusion in IEEE Software does not necessarily constitute endorsement by the
IEEE or the IEEE Computer Society.

Copyright and reprint permission: Copyright © 1999 by the Institute of Electrical and Electronics
Engineers, Inc. All rights reserved. Abstracting is permitted with credit to the source. Libraries are permitted
to photocopy beyond the limits of US copyright law for private use of patrons those post-1977 articles that
carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through
the Copyright Clearance Center, 222 Rosewood Dr., Danvers, MA 01923. For copying, reprint, or republica-
tion permission, write to Copyright and Permissions Dept., IEEE Publications Admin., 445 Hoes Ln.,
Piscataway, NJ 08855-1331.

Circulation: IEEE Software (ISSN 0740-7459) is published bimonthly by the IEEE Computer Society. IEEE head-
quarters: Three Park Ave., 17th Floor, New York, NY 10016-5997. IEEE Computer Society Publications Office:
10662 Los Vaqueros Cir., PO Box 3014, Los Alamitos, CA 90720-1314; (714) 821-8380; fax (714) 821-4010. IEEE
Computer Society headquarters: 1730 Massachusetts Ave. NW, Washington, DC 20036-1903. Annual elec-
tronic/paper/combo subscription rates for 1999: $27/34/44 in addition to any IEEE Computer Society dues,
$49 in addition to any IEEE dues; $93 for members of other technical organizations. Nonmember subscrip-
tion rates available on request. Back issues: $10 for members, $20 for nonmembers. This magazine is avail-
able on microfiche.
Postmaster: Send undelivered copies and address changes to Circulation Dept., IEEE Software, PO Box
3014, Los Alamitos, CA 90720-1314. Periodicals Postage Paid at New York, NY, and at additional mailing
offices. Canadian GST #125634188. Canada Post Publications Mail Product (Canadian Distribution) Sales
Agreement Number 0487805. Printed in the USA.

EDITOR-IN-CHIEF: STEVE MCCONNELL

10662 LOS VAQUEROS CIRCLE

LOS ALAMITOS, CA 90720-1314
software@construx.com

EDITORS-IN-CHIEF EMERITUS:
CARL CHANG AND ALAN M. DAVIS

MANAGING EDITOR: DALE C. STROK

dstrok@computer.org
GROUP MANAGING EDITOR: DICK PRICE

STAFF EDITOR: DENNIS TAYLOR

NEWS EDITOR: CRYSTAL CHWEH

ASSISTANT EDITORS: CHERYL BALTES,
SHANI BERGEN, AND JENNY FERRERO

MAGAZINE ASSISTANTS: ROBIN MARTIN AND

MOLLY DAVIS: rmartin@computer.org

ART DIRECTOR: JILL BOYER

COVER ILLUSTRATION: DIRK HAGNER

TECHNICAL ILLUSTRATOR: ALEX TORRES

PRODUCTION ARTIST: JILL BOYER

PUBLISHER: MATT LOEB

MEMBERSHIP/CIRCULATION

MARKETING MANAGER: GEORGANN CARTER

ADVERTISING MANAGER: PATRICIA GARVEY

ADVERTISING COORDINATOR: DEBBIE SIMS

