
est practices STEVE McCONNElL, EDITOR

Prospecting for
programmer’s

gold.

REWARD for lost so~~al-e-elzgi7leel-i7zg concept.
Responds to the name “bzfovnation hiding. ” Last
seen in Canada 212 the Late 1970s. Sometimes
answers to “encapsulation, ” “modzlla&y, ” 01‘
“abswaction. ” Iffound, please call Yii-HIDE.

INF’OFU4ATION HIDING IS OXE OF SOFT-
ware engineering’s seminal design ideas. So what’s
happened to it? Most of the structured and object-
oriented design books I checked recently list “infor-
mation hiding” in their indexes, but few give it
more than a passing acknowledgment. This slight is
akin to the response that Michael Stipe, leader of
the rock group R.E.M., gave u-hen asked to
describe the Beatles’ influence on his music. He
said he doubted that he had ever listened to an
entire Beatles album. They are irrelel-ant, he said,
“elevator music.”

As a musician and composer, Stipe has missed
,u’.,.‘.. ,, L, 4,s :3 A something by not listening to the Beatles. As soft-

‘i “,
‘-“‘s’

ware designers and implementors, some of us have

“” :~. _’ missed something by not thoroughly acquainting
sn

.“,.(:i” _” : ,” i” Qurselves with information hiding.
0’. ““-“: 8.

j I33 .(.) i ‘*,,rL i b&T OF THE DARK. Information hiding first came
1. tt;r.&blic attention in David Parnas’s 1972 paper,
z “‘On the Criteria to Be Used in Decomposing

Systems Into Modules” (Commarzicatio?zs of the

” AC,SII, Dec. 1972). Information hiding is character-
‘ized by the idea of “secrets” - design and imple-
mentation decisions that a software developer
hides from the rest of a program. It is part of the
foundation of both structured and object-oriented
design. In structured design, information hiding
produces “black boxes”; in object-oriented design,
it gives rise to the concepts of encapsulation and
modularity, and is associated with abstraction.
However, information hiding doesn’t require or

Editor: depend on any particular design methodoldgy, and
you can use it with any design approach.

Phantom take Engineering Frederick Brooks, in the 20th Anniversary edi-
tion of The Mythical Man-Month (Addison-

” Box 6922 Wesley,
Bellevue, WA 98008

1995) , concludes that his criticism of
Information hiding was one of the few errors in

StNCOtN@CIO~.COm the book’s first edition: “Parnas was right, and I

was wrong about information hiding,” he pro-
claims. In 1987, Barry Boehm reported that infor-
mation hiding was a powerful technique for elimi-
nating rework and that it was particularly effective
during software evolution (“Improving Software
Productivity,” Computer, Sept. 1987). As incre-
mental, evolutionary development styles become
more popular, the value of information hiding can
only increase.

DESIGN SECRETS. s uppose you have a program in
which each object is supposed to have a unique ID
stored in a member variable called ID. One design
approach would be to use integers for the IDS and

store the highest ID assigned in a global variable
called M~XID. In each place that a new object is
allocated, perhaps in each object’s constructor,
you could simply use the statement ID =
++MaxID. (This is a C-language statement that
increments the value of M~XID by 1 and assigns
the new value to ID.) That would guarantee a
unique ID, and it would add the absolute mini-
mum of code in each place an object is created.
W’hat could go wrong with that?

A lot of things. What if you want to reserve
ranges of IDS for special purposes? What if you
want to reuse the IDS of objects that have been
destroyed? What if you want to add an assertion
that fires when you allocate more IDS than the
maximum number you’ve anticipated? If you allo-
cated IDS by spreading ID = ++M~~ID state-
ments throughout your program, you’d have to
change the code associated with every one of
those statements.

The way new IDS are created is a design deci-
sion that you should hide. If you use the phrase
++MaxID throughout your program, you expose

Continued on page 12 7

0740.7459,96,$05 00 0 1996 IEEE MARCH 1996

best practices

the fact that a new ID is created by incre-
menting MaxID. If, instead, you put tht
statement ID = NWID () throughout
your program, you hide the information
about how new IDS are created. Inside
the NewID () function, you might still
have just one line of code - return (
++M~XID) or its equivalent - but if
you later decide to reserve certain ranges
of IDS for special purposes or to reuse old
IDS, you could make those changes with-
in the NewID () function itself without
touching dozens or hundreds of ID =
N~WID () statements. And, no matter
how complicated the revisions inside
NewID () might become, they wouldn’t
affect any other part of the program.

Now suppose you discover that you
need to change the ID type from an inte-
ger to a string. If you’ve spread variable
declarations like int ID throughout your
program, your use of the NWID () ftmc-
tion won’t help. You’ll still have to go
through your program and make dozens
or hundreds of changes.

In this case, the design decision to
hide is the ID’s type. You could simply
declare your IDS to be of IDTYPE, a user-
defined type that resolves to int, rather
than directly declaring them to be of type
int. Once again, hiding a design decision
makes a huge difference in the amount of
code affected by a change.

SPARE CHANGES. To use information hid-
ing, you begin by listing the design secret:,
that you want to hide. As the example
suggested, the most common kind of
secret is a design decision that you think
might change. You then separate each
design secret by assigning it to its own
class, subroutine, or other design unit.
Next you isolate (encapsulate) each secret
so that if it does change, the change does-
n’t affect the rest of the program.

Some of the design areas that are most
likely to change are specific to individual
projects, but you will run into others
again and again, such as

+ hardware dependencies for display
screens, printers, plotters, communica-
tions devices, disk drives, tapes, sound,,
and so on;

+ input and output formats, both

IEEE SOFTWARE

machine and end-user readable;
+ nonstandard language features and

library routines;
+ difficult design and implementation

areas, especially areas that might be
developed poorly and require redesign or
reimplementation;

+ complex data structures, data struc-
tures that are used by more than one
class, or data structures you haven’t
designed to your satisfaction;

+ complex logic, which is almost as
likely to change as complex data struc-
tures;

+ global variables, which are probably
never truly needed, but which always
benefit from being hidden behind access
routines;

+ data-size constraints such as array
declarations and loop limits; and

+ business rules such as the laws, reg-
ulations, policies, and procedures that are
embedded into a computer system.

HEURISTIC VALUE. Aside from providing
support for structured and object-orient-
ed design, information hiding has a
unique heuristic power: the ability to
inspire effective design solutions.

Although object design provides the
heuristic power of modeling the world in
objects, in the example above, object
thinking wouldn’t help you avoid declar-
ing the ID as an int instead of an
IDTYPE. The object designer would ask,
“Should an TD be treated as an object?’
Depending on the project’s coding stan-
dards, a “Yes” answer might mean that
the designer has to create interface and
implementation source-code files for the
ID class; write a constructor, destructor,
copy operator, and assignment operator;
document it all; llave it all reviewed; and
place it under configuration control.

Unless the designer is exceptionally moti-
vated, he’ll decide that creating a whole
class just for an ID isn’t worth it and will
use ints instead.

Note what just happened. A useful
design alternative - that of simply hid-
ing the ID’s data type - was not even
considered. If, instead, the designer had
asked, “What about the ID should be
hidden?” he might well have decided to
hide its type behind a simple type decla-
ration that substitutes IDTYPE for int.
The difference between object design
and information hiding in this example is
more subtle than a clash of explicit rules
and regulations. Object design would
approve of this design decision as much
as information hiding would. Rather, the
difference is one of heuristics: Thinking
about information hiding inspires :and
promotes design decisions that thinking
about objects does not.

WHAT TO HIDE? Information hiding can
also be useful in designing a class’s public
interface. The gap between theory and
practice in class design is wide. Among
many class designers, the decision ahlout
what to put into a class’s public interface
amounts to deciding what interface
would be the easiest to write code tom -
which usually results in exposing as much
of the class as possible. From what I’ve
seen, most programmers would rather
expose all of a class’s private data than
write 10 extra lines of code to keep the
secrets intact. Asking, “What does -this
class need to hide?” cuts to the heart of
the interface-design issue. If you can put
a function or data into the class’s public
interface without compromising its
secrets, do. Otherwise, don’t.

Asking what needs to be hidden sup-
ports good design decisions at all levels.
It promotes the use of named constants
instead of literals at the implementation
level. It helps in creating good subromine
and parameter names inside classes. It
guides decisions about class and sub:iys-
tern decompositions and interconnections
at the system level. Get into the habit of
asking, “M’hat should I hide?” You’ll be
surprised at how many difficult design
decisions vanish before your eyes. +

