
Prospecting for
programmer’s

gold.

IF ALEXANDER THE GREAT COULD
conquer the known world by the time he was 18,
you would think adults could conquer the bits of
complexity contained in the taupe-colored boxes
on their desks.

Unfortunately, these “bits of complexity”
aren’t as simple as some people assume.
Computing is the only profession in which a sin-
gle mind is obliged to span the intellectual dis-
tance from a bit to a few hundred megabytes, a
ratio of IO’, or nine orders of magnitude. The
immensity of this ratio is staggering. As Edsger
Dijkstra says, “Compared to that number of
semantic h&, the average mathematical theory
is-almost flat. By evoking the need for deep con-
ceptual hierarchies, the automatic computer con-
fronts us with a radically new intellectual chal-

I, ‘. lenge that has no precedent in our history” (“On
.114; :, ’ .‘- ,,: -.,j, -, .(

-:(,;&‘; : ,I ,,,,’
“’ ,/ _” the Cruelty of Really Teaching Computer

(, :: I” ,.3.
?,,‘.*> :.1..: c .:,,, /I 5i ” II Science,” ConzmuTzications of the ACM, Dec. 1989).
g ““,‘;.‘i: 1‘ _ “,::::, ’ ;-, 1L ̂’ i i ,.I/, ;::,; -: ” At the 1972 Turing Award Lecture, Dijkstra

-i,,’ : 1 .,Z,J’ -.,‘,_-(
argued that most programming is an attempt to

.,,
,;, /,I,/’ ‘ ,;,;; ” ;,‘!s compensate for the limited size of our skulls-to

^ ,‘;,, I’, ““manage the enormous complexity associated with
.,: :.. _ : &-1 _)_ ‘I’.,, -

/0,1 _ ,;,y: :,, ,.+nodern software systems. Some software com-
i”’ ! _ ‘y.:. ,.)

- ,, :‘Z,,1. I. plexity is inherent in the problems we try to solve,
but a large part depends as much on the solution

t&problem. The best solutions are those creat- :, 2s.

(8” ,li (’ ,‘_.,’ %d by people who realize just how small their
., “, skulls are and tailor their solutions accordingly.

HIERARCHIES AND ABSTRACTIONS. Hierarchies and
abstractions are two of the most effective ways to
manage complexity. A hierarchy is a tiered, struc-
tured organization in which a problem space is divid-
ed into levels that are ordered and ranked. In a hier-
archy, you handle different details at different levels.
The details don’t go away completely; you simply
push them to another level so that you can think

~ _~ Editor: about them when you want to rather than all at the

Steve McConnell same time. Hierarchies come into play most obvi-

Construx Software Builders
ously in the module hierarchy of a functional design,

PO Box 6922
but also in inheritance hierarchies in object-oriented

Bellevue, WA 98008
design, nested data structures, and many other cases.

Using hierarchies comes naturally to most peo-
smcconn@aol.com ple. wh en we draw a complex object such as a

house, for example, we tend to draw it as a hierar-
chy. As Herbert Simon points out in The Sciences
of tbhe Artificial, we first draw the house’s outline,
then the windows and doors, then additional
details. We don’t draw the house brick by brick,
shingle by shingle, or nail by nail.

Abstraction is another way of reducing complex-
ity by handling different details at different levels.
Any time you work with an aggregate entity, you’re
working with an abstraction. If you refer to an
object as a “house” rather than as a combination of
glass, wood, and nails, you’re making an abstraction.
If you refer to a collection of houses as a “town,”
you’re making another abstraction. Abstraction is a
more general concept than hierarchy. It can reduce
complexity by spreading details across a loose net-
work of components, for example, rather than
among a hierarchy’s strictly tiered levels.

Programming productivity has advanced large-
ly through increasing the abstractness of program
components. According to Fred Brooks (“No
Silver Bullets-Essence and Accidents of Software
Engineering,” Computer, April 1987), the move
from machine language to higher-level languages
produced the single biggest productivity gain ever
made in software development. That move freed

programmers from worrying about the detailed
quirks of individual pieces of hardware and
allowed them to focus on programming.

More recently, the advent of visual program-
ming environments has greatly reduced the com-
plexity associated with creating GUI applications.

Continued on page 12 7

Q CopyrIght 0 1996 Steven C. McConnell. All Rights Reserved. NOVEMBER 1996

Continued j%om page 128

Visual programming environments allow
programmers to work at an abstraction
level at which they can forget about many
GUI-related housekeeping details and
focus on application particulars.

Neither hierarchies nor abstractions
reduce the number of details in a pro-
gram; they might actually increase them.
Their benefit arises from organizing
details so that fewer details have to be
considered at any one time.

DESIGN GUIDANCE. Focusing on minimizing
complexity yields valuable design guidance.

Subsystem design. At the software archi-
tecture level, you can simplify a problem
by dividing it into subsystems. The more
independent you make the subsystems-
the more strictly you separate their con-
cerns-the more you reduce complexity,
and the more you enable programmers to
focus on one thing at a time.

Classes and modules. Without classes or
modules, the traditional advice to keep
individual routines short becomes a dou-
ble-edged sword. It helps readers under-
stand each routine, but it tends to multi-
ply the number of routines systemwide,
which makes the system as a whole harder
to understand.

Classes and modules, and for that mat-
ter subsystems, are helpful complexity-
reduction tools because they provide an
intermediate level of aggregation between
individual routines and entire systems.
With classes and modules, you can keep
routines short but combine them into
meaningful groups to keep complexity
from exploding at the whole-system level.

Cohesion and coupling. The structured
design guideline to build programs with
strong cohesion and loose coupling arises
from the need to manage complexity.
The more loosely coupled two routines
or classes are, the fewer interactions are
possible and the less complex their rela-
tionship will be. The stronger a routine’s
cohesion, the neater a mental package it
fits into and the less your brain has to
remember and account for in the opera-
tion of its code.

IEEE SOFTWARE

out (the number of routines a routine
Fan-out. The classic advice to limit fan-

calls) might seem arbitrary until you real-
ize that the underlying motivation for the
advice is to limit the complexity that a
programmer has to contend with at any
one time. The computer can handle vir-
tually any degree of fan-out; it’s human
software developers with small skulls who
need a limit on the possibilities they have
to consider simultaneously.

Information hiding. Information hiding is
the practice of hiding design and imple-
mentation details behind abstract routine,
module, and class interfaces. From a com-
plexity viewpoint, information hiding is
perhaps the most powerful design heuris-
tic because it explicitly focuses on hiding
details, which ipso facto reduces a pro-
gram’s complexity when viewed from any
particular point of view.

~ brings the purnose of coding standards
into focus. From a complexity reduction
viewpoint, the particular details of a cod-

”

ing standard almost don’t matter. The
primary benefit of a coding standard is
that it reduces the complexity of having
to revisit formatting, documentation, and
naming decisions with every line of code
you write. When you standardize such
decisions, you free up mental resources
for more challenging aspects of the pro-
gramming problem.

CODING GUIDANCE. A focus on reducing
complexity also helps cut through many
historically nettlesome coding issues.

Global data. Global data lets virtually any
part of a program interact with any other
part of the program through their opera-
ions on the same data. Even a few global
variables dramatically increase the com-
dexity that a human reader has to deal
with when trying to understand a program;
For that reason global data compromises
the programmer’s primary objective of
keeping complexity to a minimum.

Gotos. What guidance does complexity
reduction provide for the historically
controversial goto debate? Because gotos
don’t necessarily follow any specific pat-
tern, your brain can’t simplify their oper-
ation in any standard way. Gotos intro-
duce flexibility that dramatically increases
a program’s complexity and therefore
should be avoided.

By the same reasoning, if you need to
use gotos to compensate for weaknesses in
the programming language, do so-if such
use serves to reduce a program’s complexity
from both the local and global viewpoints.

Coding standards. The complexity lens

One of the reasons that coding stan-
dards are often controversial is that the
choice among many candidate standards
is essentially arbitrary. Standards are
most useful when they spare you the
trouble of making and defending arbi-
trary decisions. They’re less valuable
when they impose restrictions in more
meaningful areas.

LITMUS TEST. When programming is seen
predominately as an attempt to manage
complexity, the litmus test for any design
or implementation approach becomes
clear: Does the approach increase or
decrease overall system complexity? If a
design seems simple and yet accounts fclr
all possible cases, it is a good design. If an

implementation results in easy-to-read
code that is more simple than clever, it is
a good implementation.

Our brains might not be capable of
fully encompassing the mind-numbing
details associated with creating a modern
software system. But, paradoxically, if we
approach software problems with a keen
awareness that our skulls are smaller tha.n
we would like and tailor our approaches
accordingly, we just might be able to
conquer that world of details after all. <*

