
C o p y r i g h t © 2 0 0 2 S t e v e n C . M c C o n n e l l . A l l R i g h t s R e s e r v e d . M a y / J u n e 2 0 0 2 I E E E S O F T W A R E 5

from the editor

I Know What I Know
Steve McConnell

E d i t o r i n C h i e f : S t e v e M c C o n n e l l � C o n s t r u x S o f t w a r e � s o f t w a r e @ c o n s t r u x . c o m

I
n most of my columns, I write about
topics I know about. I am becoming in-
creasingly aware of how many topics I
don’t know. This column describes
some questions that I personally would
most like to have answered.

How important is software
construction?

Software construction has
been the awkward stepchild of
software engineering for decades.
This puzzles me because software
construction is the only activity
that’s guaranteed to be done on
every project. Code is the center
of the software universe. Process
advocates tend to downplay cod-
ing, focusing more on the docu-
mentation that occurs before and
after coding than the code itself.

Academics have focused for decades on elim-
inating coding. My efforts to recruit con-
struction articles for IEEE Software have
been an uphill battle because it seems that
very few people want to write about coding.

Because construction happens on every
project, why do some experts downplay its
importance? I suspect that a lot of the en-
ergy behind two recent movements—open
source and Extreme Programming—arises
because each recognizes the central role that
coding plays in software development. This
is a breath of fresh air to software develop-
ers who never forget that software is code.

How do you manage multiple
releases?

Managing complicated versions is one of
the most significant challenges in software I
see today. Released versions can vary by fea-
tures, hardware platform, language, culture,
customer, and many other factors. I com-

monly see companies actively supporting
and enhancing more versions of their system
than they have programmers. What are the
most useful strategies for managing large
numbers of concurrent releases based on the
same code base? What are the strategies for
managing requirements, design, and tests
that go along with those releases?

Why doesn’t everyone use revision
control software?

A more mundane question I have about
configuration management is, Why are
some people still not using revision control
software? Ten years ago I debated whether I
should write about revision control software
in my book Code Complete. I assumed re-
vision control software was so common that
discussing it would be passé. After talking
with literally hundreds of developers and
managers the past several years, however, I
am convinced that somewhere between 10
and 50 percent of software organizations
still do not use revision control software.
Why?

How is popular software designed?
I would like to see the designs for some of

the world’s best known software. What does
the design for the Sabre airline reservations
system look like? What about the US air
traffic control software? What are the guid-
ing principles of the design of Windows
2000, PC-DOS, and IBM OS/360? What
about the space shuttle flight control soft-
ware? What are Excel’s major design chal-
lenges? What about SAP? What about Ama-
zon.com’s Web site?

If these popular software products were
buildings, I would be able to see at least
some of their designs. For example, the Na-
tional Archives and Records Administration
Web site (www.nara.gov) contains plans for

6 I E E E S O F T W A R E M a y / J u n e 2 0 0 2

FROM THE EDITOR

28,000 buildings going back 150
years. Architectural techniques are
not treated as “proprietary” be-
cause the public has a stake in
building safety. Software has be-
come so pervasive in modern life
that I think the public has a similar
interest in the design of some of the
most pervasive software systems.
What would it take to see these de-
signs?

How big are popular
programs?

How big are today’s common sys-
tems, and what did it take to build
them? I’d like to see cost, effort,
schedule, lines of code, and defect
counts for major applications such as
Windows 2000, TurboTax, Norton
Anti-Virus, Adobe PhotoShop, Excel,
and SAP. Having a list of the man-
agement parameters of well-known
applications would help companies
create meaningful ballpark estimates
for their own systems. It wouldn’t re-
place detailed estimation, but would
help reduce the common factor-of-2
to factor-of-10 errors in initial ball-
park estimates.

Why do software
professionals still fall for
silver bullets?

Fifteen years ago in his classic
article “No Silver Bullets,”1 Fred
Brooks predicted that no single tool
or practice would produce an order-
of-magnitude improvement in qual-
ity or productivity over a 10-year pe-
riod. In spite of repeated “silver
bullet” claims for innovations rang-
ing from automatic programming to
component-based development to
object-oriented programming to
CASE tools (the list is nearly end-
less), no single tool or practice has
risen to the level Brooks described.
Time has proved Brooks’ prediction
correct.

Software professionals have been
burned time and time again by exag-
gerated claims for new tools and
practices. My question is, Why are so
many smart, experienced software
professionals still so gullible about
silver bullets?

Do compensation structures
in software organizations
make any sense?

Many companies continue to treat
managers as hierarchically superior
to technical staff and pay them more.
The idea that companies turn good
programmers into bad managers is
so common it is a cliché. Software
managers have a broad span of con-
trol, whereas technical staff tend to
be much more narrowly and deeply
focused, and I think this might be
part of the reason why managers are
paid more. But professional athletic
teams value depth of skill at least as
much as breadth. Star players earn
more than star managers. Why don’t
software companies do the same?

Similarly, the ten-fold difference in
productivity between best and worst
software developers has been well
documented. Yet I routinely talk to
managers who say their companies
will not pay above market to attract
top developers. Considering that the
difference in compensation between
best and worst developers is only
about 25 to 50 percent, while the dif-
ference in performance is about 1,000
percent, why don’t all companies
make at least some attempt to hire
from the top of the talent pool?

How good are most software
companies?

In the software process area, the
Software Engineering Institute re-
ports that organizational process ma-
turity has increased dramatically. In
1991, approximately 80 percent of
organizations assessed were at Capa-
bility Maturity Model Level 1.2 By
2001, only 38 percent of organiza-
tions assessed were at CMM Level 1.
My question is, How many compa-
nies are really at CMM Level 1?
Only a small number of companies
report assessment data to the SEI
(less than 500 companies in 15
years). What are the CMM levels of
the thousands of companies that
don’t report their results to the SEI?
What about the companies that
haven’t heard of the CMM? (Actu-
ally, I think I can guess the answer to
this question!)

DEPARTMENT EDITORS

Bookshelf: Warren Keuffel,
wkeuffel@computer.org

Construction: Andy Hunt and Dave Thomas,
Pragmatic Programmers,

{Andy, Dave}@pragmaticprogrammer.com

Country Report: Deependra Moitra, Lucent Technologies
d.moitra@computer.org

Design: Martin Fowler, ThoughtWorks,
fowler@acm.org

Loyal Opposition: Robert Glass, Computing Trends,
rglass@indiana.edu

Manager: Don Reifer, Reifer Consultants,
dreifer@sprintmail.com

Quality Time: Jeffrey Voas, Cigital,
voas@cigital.com

STAFF

Senior Lead Editor
Dale C. Strok

dstrok@computer.org

Group Managing Editor
Crystal Chweh

Associate Editors
Jenny Ferrero, Shani Murray, and Dennis Taylor

Staff Editors
Scott L. Andresen and Kathy Clark-Fisher

Editorial Assistants
Rebecca Deuel and Ty Manuel

Magazine Assistants
Dawn Craig, software@computer.org

Pauline Hosillos

Art Director
Toni Van Buskirk

Cover Illustration
Dirk Hagner

Technical Illustrator
Alex Torres

Production Assistant
Monette Velasco

Production Artists
Carmen Flores-Garvey and Larry Bauer

Executive Director
David Hennage

Publisher
Angela Burgess

Assistant Publisher
Dick Price

Membership/Circulation Marketing Manager
Georgann Carter

Advertising Assistant
Debbie Sims

CONTRIBUTING EDITORS

Greg Goth, Anne Lear, Keri Schreiner,
Joan Taylor, and Margaret Weatherford

Editorial: All submissions are subject to editing for clarity,
style, and space. Unless otherwise stated, bylined articles
and departments, as well as product and service descrip-
tions, reflect the author’s or firm’s opinion. Inclusion in
IEEE Software does not necessarily constitute endorsement
by the IEEE or the IEEE Computer Society.

To Submit: Send 2 electronic versions (1 word-processed
and 1 postscript or PDF) of articles to Magazine Assistant,
IEEE Software, 10662 Los Vaqueros Circle, PO Box 3014,
Los Alamitos, CA 90720-1314; software@computer.org. Ar-
ticles must be original and not exceed 5,400 words including
figures and tables, which count for 200 words each.

M a y / J u n e 2 0 0 2 I E E E S O F T W A R E 7

FROM THE EDITOR

What are software’s real best
practices?

Although software people some-
times have a tendency to latch onto
“one size fits all” solutions, I think
most people realize that different ap-
plication domains call for different
software development approaches.
It’s natural and appropriate to use
one set of tools and practices to de-
velop avionics software and a differ-
ent set to develop video games.

Certain clusters of practices seem to
work well within particular domains.
For embedded systems, phased, gated
processes with lots of up-front re-
quirements work and design seem to
work well. For software products
companies, code-focused develop-
ment efforts that use highly commit-
ted individuals, have a close working
relationship with marketing, and per-
form extensive independent testing
are appropriate. For in-house busi-
ness systems, executive sponsorship,
steady end-user involvement, moder-
ate levels of requirements documenta-
tion, and developer testing seem to be
key. These broad strokes are recogniz-
able to people working in these areas.

My question here is, Can we map
out the applicability of these prac-
tices in detail? Are there some clus-
ters of practices that interact syn-
ergistically? If some practices do
interact synergistically, are they al-
ways synergistic, or only when used
to develop certain kinds of software?
Are there practices that are best prac-
tices in some contexts and worst
practices in other contexts? Does any
single practice constitute a best prac-
tice in all areas?

What do you know?
I know what I know, and now I’d

like to hear what you know! If you
have thoughts about these questions,
I’d love to hear from you at steve.
mcconnell@construx.com.

References

1. Frederick P. Brooks, “No Silver Bullets—Essence
and Accidents of Software Engineering,” Com-
puter, vol. 20, no. 4, Apr. 1987, pp. 10–19.

2. “Process Maturity Profile of the Software
Community 2001 Year End Update,” Soft-
ware Engineering Measurement and Analysis
Team, Software Engineering Inst., pdf/2002mar.
pdf; www.sei.cmu.edu/sema/pdf/2002mar.pdf.

EDITOR IN CHIEF:
Steve McConnell

10662 Los Vaqueros Circle
Los Alamitos, CA 90720-1314

software@construx.com

EDITOR IN CHIEF EMERITUS:
Alan M. Davis, Omni-Vista

ASSOCIATE EDITORS IN CHIEF

Design: Maarten Boasson, Quaerendo Invenietis
boasson@quaerendo.com

Construction: Terry Bollinger, Mitre Corp.
terry@mitre.org

Requirements: Christof Ebert, Alcatel Telecom
christof.ebert@alcatel.be

Management: Ann Miller, University of Missouri, Rolla
millera@ece.umr.edu

Quality: Jeffrey Voas, Cigital
voas@cigital.com

Experience Reports: Wolfgang Strigel,
Software Productivity Center; strigel@spc.ca

EDITORIAL BOARD

Don Bagert, Texas Tech University
Richard Fairley, Oregon Graduate Institute

Martin Fowler, ThoughtWorks
Robert Glass, Computing Trends

Andy Hunt, Pragmatic Programmers
Warren Keuffel, independent consultant
Brian Lawrence, Coyote Valley Software

Karen Mackey, Cisco Systems
Deependra Moitra, Lucent Technologies, India

Don Reifer, Reifer Consultants
Suzanne Robertson, Atlantic Systems Guild

Dave Thomas, Pragmatic Programmers

INDUSTRY ADVISORY BOARD

Robert Cochran, Catalyst Software (chair)
Annie Kuntzmann-Combelles, Q-Labs

Enrique Draier, PSINet
Eric Horvitz, Microsoft Research

David Hsiao, Cisco Systems
Takaya Ishida, Mitsubishi Electric Corp.

Dehua Ju, ASTI Shanghai
Donna Kasperson, Science Applications International

Pavle Knaflic, Hermes SoftLab
Günter Koch, Austrian Research Centers

Wojtek Kozaczynski, Rational Software Corp.
Tomoo Matsubara, Matsubara Consulting

Masao Matsumoto, Univ. of Tsukuba
Dorothy McKinney, Lockheed Martin Space Systems

Nancy Mead, Software Engineering Institute
Stephen Mellor, Project Technology

Susan Mickel, AgileTV
Dave Moore, Vulcan Northwest

Melissa Murphy, Sandia National Laboratories
Kiyoh Nakamura, Fujitsu

Grant Rule, Software Measurement Services
Girish Seshagiri, Advanced Information Services

Chandra Shekaran, Microsoft
Martyn Thomas, Praxis

Rob Thomsett, The Thomsett Company
John Vu, The Boeing Company

Simon Wright, Integrated Chipware
Tsuneo Yamaura, Hitachi Software Engineering

MAGAZINE OPERATIONS COMMITTEE

George Cybenko (chair), James H. Aylor, Thomas J.
Bergin, Frank Ferrante, Forouzan Golshani, Rajesh
Gupta, Steve McConnell, Ken Sakamura, M. Satya-

narayanan, Nigel Shadbolt, Munindar P. Singh,
Francis Sullivan, James J. Thomas

PUBLICATIONS BOARD

Rangachar Kasturi (chair), Jean Bacon, Mark Chris-
tensen, George Cybenko, Gabriella Sannitti di Baja,

Lee Giles, Thomas Keefe, Dick Kemmerer,
Anand Tripathi

U p c o m i n g T o p i c s
July/August: Initiating Software Product Lines
Adopting a product line perspective on software development af-

fects the “usual” way of doing business at the organizational and tech-
nical management levels as well as at the technical software engineer-
ing level. Look for techniques, case studies, and more.

Out of the Box: Solving problems in our world of fast-
changing technology and expanding information requires creative and
innovative ideas. We will explore some of the qualities and practices
that can help us break through traditional modes of thinking.

Sept./Oct.: Educating Software Professionals
What do software engineering professionals need to know, accord-

ing to those who hire and manage them? This issue will focus on the
methods and techniques for enhancing software education programs
worldwide—academic, re-education, and alternative.

Nov./Dec.: The Business of Software Engineering
Software professionals can benefit both themselves and their com-

panies by weaving business and economic considerations into their
software engineering decisions. This issue will explore what it takes to
support business success.

