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I
n most of my columns, I write about
topics I know about. I am becoming in-
creasingly aware of how many topics I
don’t know. This column describes
some questions that I personally would
most like to have answered. 

How important is software
construction?

Software construction has
been the awkward stepchild of
software engineering for decades.
This puzzles me because software
construction is the only activity
that’s guaranteed to be done on
every project. Code is the center
of the software universe. Process
advocates tend to downplay cod-
ing, focusing more on the docu-
mentation that occurs before and
after coding than the code itself.

Academics have focused for decades on elim-
inating coding. My efforts to recruit con-
struction articles for IEEE Software have
been an uphill battle because it seems that
very few people want to write about coding.

Because construction happens on every
project, why do some experts downplay its
importance? I suspect that a lot of the en-
ergy behind two recent movements—open
source and Extreme Programming—arises
because each recognizes the central role that
coding plays in software development. This
is a breath of fresh air to software develop-
ers who never forget that software is code. 

How do you manage multiple
releases?

Managing complicated versions is one of
the most significant challenges in software I
see today. Released versions can vary by fea-
tures, hardware platform, language, culture,
customer, and many other factors. I com-

monly see companies actively supporting
and enhancing more versions of their system
than they have programmers. What are the
most useful strategies for managing large
numbers of concurrent releases based on the
same code base? What are the strategies for
managing requirements, design, and tests
that go along with those releases? 

Why doesn’t everyone use revision
control software?

A more mundane question I have about
configuration management is, Why are
some people still not using revision control
software? Ten years ago I debated whether I
should write about revision control software
in my book Code Complete.  I assumed re-
vision control software was so common that
discussing it would be passé. After talking
with literally hundreds of developers and
managers the past several years, however, I
am convinced that somewhere between 10
and 50 percent of software organizations
still do not use revision control software.
Why?

How is popular software designed?
I would like to see the designs for some of

the world’s best known software. What does
the design for the Sabre airline reservations
system look like? What about the US air
traffic control software? What are the guid-
ing principles of the design of Windows
2000, PC-DOS, and IBM OS/360? What
about the space shuttle flight control soft-
ware? What are Excel’s major design chal-
lenges? What about SAP? What about Ama-
zon.com’s Web site? 

If these popular software products were
buildings, I would be able to see at least
some of their designs. For example, the Na-
tional Archives and Records Administration
Web site (www.nara.gov) contains plans for
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28,000 buildings going back 150
years. Architectural techniques are
not treated as “proprietary” be-
cause the public has a stake in
building safety. Software has be-
come so pervasive in modern life
that I think the public has a similar
interest in the design of some of the
most pervasive software systems.
What would it take to see these de-
signs?

How big are popular
programs? 

How big are today’s common sys-
tems, and what did it take to build
them? I’d like to see cost, effort,
schedule, lines of code, and defect
counts for major applications such as
Windows 2000, TurboTax, Norton
Anti-Virus, Adobe PhotoShop, Excel,
and SAP. Having a list of the man-
agement parameters of well-known
applications would help companies
create meaningful ballpark estimates
for their own systems. It wouldn’t re-
place detailed estimation, but would
help reduce the common factor-of-2
to factor-of-10 errors in initial ball-
park estimates. 

Why do software
professionals still fall for
silver bullets?

Fifteen years ago in his classic 
article “No Silver Bullets,”1 Fred
Brooks predicted that no single tool
or practice would produce an order-
of-magnitude improvement in qual-
ity or productivity over a 10-year pe-
riod. In spite of repeated “silver
bullet” claims for innovations rang-
ing from automatic programming to
component-based development to
object-oriented programming to
CASE tools (the list is nearly end-
less), no single tool or practice has
risen to the level Brooks described.
Time has proved Brooks’ prediction
correct.

Software professionals have been
burned time and time again by exag-
gerated claims for new tools and
practices. My question is, Why are so
many smart, experienced software
professionals still so gullible about
silver bullets? 

Do compensation structures
in software organizations
make any sense? 

Many companies continue to treat
managers as hierarchically superior
to technical staff and pay them more.
The idea that companies turn good
programmers into bad managers is
so common it is a cliché. Software
managers have a broad span of con-
trol, whereas technical staff tend to
be much more narrowly and deeply
focused, and I think this might be
part of the reason why managers are
paid more. But professional athletic
teams value depth of skill at least as
much as breadth. Star players earn
more than star managers. Why don’t
software companies do the same? 

Similarly, the ten-fold difference in
productivity between best and worst
software developers has been well
documented. Yet I routinely talk to
managers who say their companies
will not pay above market to attract
top developers. Considering that the
difference in compensation between
best and worst developers is only
about 25 to 50 percent, while the dif-
ference in performance is about 1,000
percent, why don’t all companies
make at least some attempt to hire
from the top of the talent pool? 

How good are most software
companies? 

In the software process area, the
Software Engineering Institute re-
ports that organizational process ma-
turity has increased dramatically. In
1991, approximately 80 percent of
organizations assessed were at Capa-
bility Maturity Model Level 1.2 By
2001, only 38 percent of organiza-
tions assessed were at CMM Level 1.
My question is, How many compa-
nies are really at CMM Level 1?
Only a small number of companies
report assessment data to the SEI
(less than 500 companies in 15
years). What are the CMM levels of
the thousands of companies that
don’t report their results to the SEI?
What about the companies that
haven’t heard of the CMM? (Actu-
ally, I think I can guess the answer to
this question!)
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What are software’s real best
practices?

Although software people some-
times have a tendency to latch onto
“one size fits all” solutions, I think
most people realize that different ap-
plication domains call for different
software development approaches.
It’s natural and appropriate to use
one set of tools and practices to de-
velop avionics software and a differ-
ent set to develop video games. 

Certain clusters of practices seem to
work well within particular domains.
For embedded systems, phased, gated
processes with lots of up-front re-
quirements work and design seem to
work well. For software products
companies, code-focused develop-
ment efforts that use highly commit-
ted individuals, have a close working
relationship with marketing, and per-
form extensive independent testing
are appropriate. For in-house busi-
ness systems, executive sponsorship,
steady end-user involvement, moder-
ate levels of requirements documenta-
tion, and developer testing seem to be
key. These broad strokes are recogniz-
able to people working in these areas. 

My question here is, Can we map
out the applicability of these prac-
tices in detail? Are there some clus-
ters of practices that interact syn-
ergistically? If some practices do
interact synergistically, are they al-
ways synergistic, or only when used
to develop certain kinds of software?
Are there practices that are best prac-
tices in some contexts and worst
practices in other contexts? Does any
single practice constitute a best prac-
tice in all areas? 

What do you know? 
I know what I know, and now I’d

like to hear what you know! If you
have thoughts about these questions,
I’d love to hear from you at steve.
mcconnell@construx.com. 
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