
Prospecting for
programmer’s

gold.

Editor:
Steve McConnell
Construx Software Builders

PO Box 6922
Bellevue, WA 98008

stevemcc@construx.com

b e s t p r a c t i c e s

1 3 6 0 7 4 0 - 7 4 5 9 / 9 7 / $ 1 0 . 0 0 © 1 9 9 7 I E E E M A Y / J U N E 1 9 9 7

s t e v e m c c o n n e l l

Gauging Software
Readiness with
Defect Tracking

IN THE COMPETITIVE COMMERCIAL
software market, companies feel compelled to
release software the moment it is ready. Their task
is treacherous, treading the line between releasing
poor-quality software early and high-quality soft-
ware late. Finding a sound answer to the question,
“Is the software good enough to release now?” can
be critical to a company’s survival. That answer is
sometimes based on gut instinct, but several tech-
niques can put this judgment on firmer footing.

DEFECT DENSITY. One of the easiest ways to judge
whether a program is ready for release is to mea-
sure its defect density—the number of defects per
line of code. Suppose the first version of your
product, GigaTron 1.0, consisted of 100,000 lines
of code. Further suppose that you detected 650
defects prior to the software’s release, and that 50
more defects were reported after release. The
software therefore had a lifetime defect count of
700 defects, and a defect density of 7 defects per
1,000 lines of code (KLOC).

Suppose that Version 2.0 had 50,000 addi-
tional lines of code and that you detected 400
defects prior to release and another 75 after
release. The total defect density of that release
would be 475 defects divided by 50 KLOC, or
9.5 defects per KLOC.

Now suppose that you’re trying to decide
whether GigaTron 3.0 is reliable enough to ship. In
100,000 new lines of code you’ve detected 600
defects so far, or 6 defects per KLOC. Unless you
have good reason to think that your development
process has improved with this project, your experi-
ence should lead you to expect 7 to 10 defects per
KLOC. The number of defects you should attempt
to find will vary depending on the level of quality
you’re aiming for. If you want to remove 95 percent
of all defects before shipping, you will need to
detect 650 to 950 defects. This technique suggests
that the product is not quite ready to ship.

The more historical project data you have, the

more confident you can be in your prerelease
defect density targets. If you have data from only
two projects and the range is as broad as 7 to 10
defects per KLOC, that leaves a lot of wiggle

room for judging whether the third project will be
more like the first or the second. But if you’ve
tracked defect data for 10 projects and found that
their average lifetime defect rate is 7.4 defects per
KLOC, with a standard deviation of 0.4 defects,
you have a great deal of guidance indeed.

DEFECT POOLING. Another simple defect prediction
technique is to separate defect reports into two
groups; let’s call them Pool A and Pool B. You
then track the defects in these two pools separate-
ly. The distinction between the pools is arbitrary:
you could put all the defects discovered on
Mondays, Wednesdays, and weekends into Pool
A, and the rest into Pool B. Or you could split
your test team down the middle and put each sub-
group’s reported defects into its own pool. It
doesn’t matter how you divide the group as long
as both subgroups operate independently and both
test the full scope of the product.

You then track the number of defects reported
in each pool and—here’s the important part—the
number of defects reported in both pools. The num-
ber of unique defects reported at any given time is

The more historical
project data you have,
the more confident
you can be in your
prerelease defect
density targets.

Continued on page 135

.

The number of total defects can then be
approximated by the simple formula

If the GigaTron 3.0 project has 400
defects in Pool A, 350 defects in Pool B,
and 150 of the defects in both pools, the
number of unique defects detected would
be 400 + 350 − 150 = 600. The approxi-
mate number of total defects would be
400 × 350 / 150 = 933. This suggests that
about 333 defects are yet to be detected
(about a third of the estimated total);
quality assurance on this project still has a
long way to go.

DEFECT SEEDING. In defect seeding, one
group intentionally inserts defects into a
program for detection by another group.
The ratio of the number of seeded
defects detected to the total number of
seeded defects provides a rough idea of
the total number of unseeded defects.

Suppose you intentionally seed
GigaTron 3.0 with 50 errors. For best
effect, the seeded errors should cover the
full breadth of the product’s functionality
and the full range of severities—ranging
from cosmetic to crashing errors. When
you think testing is almost complete, you
look at the seeded-defect report: 31 seed-
ed and 600 indigenous defects have been
found. You can estimate the total number
of defects with the formula

This technique suggests that GigaTron
3.0 has a total of about 50/31 × 600, or
967, defects.

To use this technique, you must seed
the defects before you begin the tests
whose defect detection rate you want to

ascertain. If your testing uses manual
methods and has no systematic way of
covering the same testing ground twice,
you should seed defects before testing
begins. If your testing uses fully auto-
mated regression tests, you can seed
defects virtually any time to estimate the
number of defects left undetected by the
automated tests.

A common problem with defect seed-
ing programs is forgetting to remove the
seeded defects. Another common prob-
lem is that removing the seeded defects
introduces new errors. To prevent these
problems, be sure to remove all seeded
defects prior to final system testing and

product release. A useful implementation
standard is to require that errors are
planted only by adding one or two lines of
code; this ensures that you can remove
the seeded errors safely by simply remov-
ing the erroneous lines of code.

DEFECT MODELING. A colleague of mine
recently added several hundred lines of
code to an existing program in one sit-
ting. The first time he compiled the
code, he got a clean compile with no
errors—his initial coding appeared to be
flawless. When he tried to test the new
functionality, however, he found that it
didn’t exist. When he reexamined his
new code, he found that his work had
been embedded in a preprocessor macro
that deactivated the new code. When he
moved the new code outside the scope of
the macro, it produced the usual number
of compiler errors.

With software defects, no news is usu-
ally bad news. If the project has reached a

late stage with few defects reported, there
is a natural tendency to think, “We finally
got it right and created a program with
almost no defects!” In reality, no news is
more often the result of insufficient testing
than of superlative development practices.

Some of the more sophisticated soft-
ware project estimation and control tools
can predict the number of defects you
should expect to find at each point in a
project. By comparing defects actually
detected to the number predicted, you
can assess whether your project is keep-
ing up with defect detection, or lagging
behind.

COMBINATIONS. Evaluating combinations
of defect density, defect pools, and defect
seeding will give you more confidence
than you could have using any one tech-
nique. Examining defect density alone on
GigaTron 3.0 suggested that you should
expect 700 to 1,000 total lifetime defects,
and that you should remove 650 to 950
before product release to achieve 95 per-
cent prerelease defect removal. If you had
detected 600 defects, the defect density
information alone might lead you to
declare the product “almost ready to
ship.” But defect pooling analysis esti-
mates that GigaTron 3.0 will produce
about 933 defects. Comparing the results
of these two techniques suggests that you
should expect a total defect count toward
the high end of the defect density range.
Because the defect seeding technique also
estimates a total number of defects in the
900s, GigaTron 3.0 appears to be a rela-
tively buggy program.

RESOURCES. The popular software devel-
opment literature doesn’t have much to
say about defect prediction. A notable
exception is Glenford Myers’ Software
Reliability (John Wiley and Sons, 1976).
Lawrence H. Putnam and Ware Myers
discuss the specific topic of defect model-
ing at some length in Measures for
Excellence (Yourdon Press, 1992). ◆

Copyright (c) 1997 Steven C. McConnell. All
Rights Reserved.

I E E E S O FT W A R E 1 3 5

ve,
No news is more
often the result
of insufficient
testing than
of superlative
development
practices.

Continued from page 136

IndigenousDefects

IndigenousDefects

total

planted

found

found

SeededDefects

SeededDefects
=

×

Defects
Defects Defects

Defectstotal
A B

(A B)
= ×

+

Defects Defects

Defects Defects
unique A

B (A B)

=

+ − +

b e s t p r a c t i c e s

.

