
C o p y r i g h t © 2 0 0 1 S t e v e n C . M c C o n n e l l . A l l R i g h t s R e s e r v e d . J u l y / A u g u s t 2 0 0 1 I E E E S O F T W A R E 5

from the editor

Common Sense
Steve McConnell

E d i t o r i n C h i e f : S t e v e M c C o n n e l l � C o n s t r u x S o f t w a r e � s o f t w a r e @ c o n s t r u x . c o m

I
like your columns, but they’re really all
just common sense,” a client told me.
He didn’t have a software background,
and my columns were his first introduc-
tion to systematic ways of understand-
ing software projects. To my chagrin,

the net effect of a well-written column ap-
peared to be that he thought software engi-
neering was trivial!

The idea that good software
engineering “is all just common
sense” is one of my pet peeves. If
good software engineering were
really all just common sense, we
should expect to see projects rou-
tinely meet their schedule and bud-
get targets and delight their end
users. I shouldn’t receive emails
every week that describe projects
that seem sensible initially but end
up failing dramatically.

A catalog of proverbs
How much does common sense tell us about

software engineering? Let’s look at several fa-
miliar proverbs and see how well they apply to
software.

Let sleeping dogs lie
This bit of common sense implies that is-

sues that aren’t currently causing problems
for a software project should be left alone.
Wait until the issues become problems, and
then worry about them. Don’t waste time
worrying about them prematurely.

How true is this common sense when
applied to software projects? A key success
factor in software project management is ac-
tive risk management, in which we proac-
tively search out sleeping dogs, poke and
prod them until they wake up, and then de-

liberately try to move them out of the pro-
ject’s way. Failure to actively manage risks is
one of the biggest contributors to software
project failure.1 Conversely, many authori-
ties cite active risk management as one of the
most significant contributors to software
project success.2,3 For example, the Software
Project Manager’s Network puts it first on
its list of 16 critical software practices.4 So
“let sleeping dogs lie” turns out to be 180
degrees wrong. The American sage Benjamin
Franklin assessed the software situation bet-
ter 200 years ago when he said, “A little
neglect may breed great mischief.”

Two heads are better than one
This is an interesting adage if only because

it competes with another aphorism, “Too
many cooks spoil the broth.” Which is right in
our world? In the software engineering classic
The Mythical Man-Month, Fred Brooks argues
that one of the most difficult challenges on
large software projects is maintaining a soft-
ware design’s conceptual integrity. Brooks pro-
poses a Surgical Team–Chief Programmer
Team programming model, one of the main
benefits of which is that most design decisions
are made by one mind—the mind of the chief
programmer. In this context, two heads might
not be better than one; too many cooks might
indeed spoil the broth.

On the other hand, one of the most effec-
tive software engineering techniques is formal
inspection, which is based on the idea that a
reviewer can detect problems that the original
author of a work product will overlook. In-
spections are one of the techniques that have
indisputably proven their worth in practice,5

so these two commonsense sayings would
seem to be both right, and both wrong—
depending on the context.

“

6 I E E E S O F T W A R E J u l y / A u g u s t 2 0 0 1

FROM THE EDITOR

An ounce of prevention is worth a
pound of cure

The average project spends 40 to 80
percent of its total effort fixing defects.
Software industry research has gener-
ally found that upstream defect-
prevention work pays big dividends in
avoiding downstream rework. As I de-
scribed in my column in the previous
issue of IEEE Software, however, there
are limits to how much prevention any
project can stand. One contribution of
the agile-programming movement is to
cast a critical eye toward prevention
and ensure that projects do not spend
more on prevention than they would
need to spend on a cure. On balance, I
think this commonsense maxim does
apply to software, but we need to be
careful not to overextend it—that is,
“moderation in all things.”

He who hesitates is lost
The point of this maxim is to instill

a bias toward action. In software devel-
opment, a project’s success or failure is
often determined within the first 10 to
20 percent of its duration.6 Occasion-
ally, software projects become mired in
analysis paralysis—debating endless de-
sign alternatives, gold-plating project
plans, and so on. Regrettably, though,
more often they tend not toward analy-
sis paralysis but toward underplan-
ning.1 So, counter to this commonsense
adage, hesitating (or planning) is a sign
of a healthy, well-run project. In this
case, what is actually common sense is
unclear, because we again have dueling
maxims. For software, I prefer “look
before you leap” or, drawing on Ben-
jamin Franklin again, “failure to pre-
pare is preparing to fail.”

Spare the rod and spoil the child
This saying about disciplining chil-

dren is based on the belief that strictly
enforcing rules will produce well-
behaved children; leniency will pro-
duce spoiled, disobedient children. In
software, we commonly see managers,
customers, and marketing departments
who seem to take this proverb to heart.
They believe that coercing their devel-
opment teams into working longer
hours will produce the software in less
time. The highbrow management ver-

sion of this old chestnut is Parkinson’s
law, “work expands to fill available
time,” which I see used as justification
for numerous coercive and manipula-
tive management practices.

Here again, the commonsense guide-
line is diametrically opposed to the soft-
ware reality. Software design and con-
struction are highly contemplative,
internal activities. A developer must be
highly motivated to be able to do soft-
ware development work at all. One of
the most basic insights of motivation
research is that when a person tries to
apply external motivation to someone
who is already highly internally moti-
vated, internal motivation decreases.
So, the net effect of “using the rod” is a
reduction in internal motivation, and
the effect on productivity is a net loss.7

A final pearl
On the basis of these examples, com-

mon sense appears to not be a good
foundation for practicing software engi-
neering. If you think otherwise, you will
likely run afoul of another pearl from
Benjamin Franklin: “Life’s tragedy is
that we get old too soon and wise too
late.”

Making it look easy
With all these counterexamples,

why do intelligent people continue to
think good software engineering prac-
tices are just common sense?

After pondering this question for
the past 10 years, I have concluded that
the phenomenon is related to the no-
tion of conditional probability. Condi-
tional probability is the branch of
probability that deals with how the
likelihood of future events is related to
the occurrence of past events. If you
flip a coin, what are the odds of it com-
ing up heads 10 times in a row? The
odds are 1 in 2 raised to the 10th
power, or 1 in 1,024. But what if the
coin has already been flipped nine
times and come up heads each time?
The only remaining random event is
the last coin toss. The coin will either
come up heads, making 10 heads in a
row, or tails, making nine heads in a
row followed by one tail. Thus, the
conditional probability of a coin com-
ing up heads 10 times in a row, if it has

DEPARTMENT EDITORS

Bookshelf: Warren Keuffel,
wkeuffel@computer.org

Country Report: Deependra Moitra, Lucent Technologies
d.moitra@computer.org

Design: Martin Fowler, ThoughtWorks,
fowler@acm.org

Loyal Opposition: Robert Glass, Computing Trends,
rglass@indiana.edu

Manager: Don Reifer, Reifer Consultants,
dreifer@sprintmail.com

Quality Time: Jeffrey Voas, Cigital,
voas@cigital.com

STAFF

Group Managing Editor
Crystal Chweh

Senior Lead Editor
Dale C. Strok

dstrok@computer.org

Associate Lead Editors
Jenny Ferrero and

Dennis Taylor

Staff Lead Editor
Shani Murray

Staff Editors
Scott L. Andresen and Kathy Clark-Fisher

Magazine Assistants
Dawn Craig

software@computer.org

Pauline Hosillos

Art Director
Toni Van Buskirk

Cover Illustration
Dirk Hagner

Technical Illustrator
Alex Torres

Production Artists
Carmen Flores-Garvey and Larry Bauer

Acting Executive Director
Anne Marie Kelly

Publisher
Angela Burgess

Membership/Circulation
Marketing Manager
Georgann Carter

Advertising Assistant
Debbie Sims

CONTRIBUTING EDITORS

Greg Goth, Ware Myers, Keri Schreiner, Judy
Shane, Gil Shif, Margaret Weatherford

Editorial: All submissions are subject to editing for clarity,
style, and space. Unless otherwise stated, bylined articles
and departments, as well as product and service descrip-
tions, reflect the author’s or firm’s opinion. Inclusion in
IEEE Software does not necessarily constitute endorsement
by the IEEE or the IEEE Computer Society.

To Submit: Send 2 electronic versions (1 word-processed
and 1 postscript or PDF) of articles to Magazine Assistant,
IEEE Software, 10662 Los Vaqueros Circle, PO Box 3014,
Los Alamitos, CA 90720-1314; software@computer.org. Ar-
ticles must be original and not exceed 5,400 words including
figures and tables, which count for 200 words each.

J u l y / A u g u s t 2 0 0 1 I E E E S O F T W A R E 7

FROM THE EDITOR

already come up heads nine times in a
row, is 1 in 2, or 50 percent.

The claim that software engineering
is all common sense is related to this
idea. Once someone has explained the
concepts clearly, they all seem like com-
mon sense because the newcomers
don’t have to explore all the answers
that sounded plausible but that turned
out to be wrong. They didn’t see the
many series of coin tosses in which we
got tails on the first, second, or third
toss. They’re only seeing the series from
the vantage point of already having
nine heads with one to go; they haven’t
banged their heads against the wrong
answers enough times to know just
how many wrong answers there are.

We can interpret the fact that people
think any part of software engineering
is commonsensical as a sign that the
field is maturing. A few effective prac-
tices are now being described so clearly
that they appear to be obvious. When
we get to the point that all of software

engineering appears to be trivial, we
will know the profession has really
come of age.

References
1. A. Cole, “Runaway Projects—Cause and Ef-

fects,” Software World, vol. 26, no. 3, 1995,
pp. 3–5.

2. B.W. Boehm, “Software Risk Management:
Principles and Practices,” IEEE Software, vol.
8, no. 1, Jan. 1991, pp. 32–41.

3. C. Jones, Assessment and Control of Software
Risks, Yourdon Press, Englewood Cliffs, N.J.,
1994.

4. SPMN Software Evaluation Model, Vol. II:
Project Execution, Software Project Manager’s
Network, 2000; www.spmn.com/products_
guidebooks.html (current 13 June 2001).

5. T. Gilb and D. Graham, Software Inspection,
Addison-Wesley, Wokingham, UK, 1993.

6. F. O’Connell, How to Run Successful Projects
II: The Silver Bullet, Prentice Hall Int’l, Lon-
don, 1996.

7. S. McConnell, Rapid Development, Microsoft
Press, Redmond, Wash., 1996.

EDITOR IN CHIEF:
Steve McConnell

10662 Los Vaqueros Circle
Los Alamitos, CA 90720-1314

software@construx.com

EDITOR IN CHIEF EMERITUS:
Alan M. Davis, Omni-Vista

ASSOCIATE EDITORS IN CHIEF

Design: Maarten Boasson, Quaerendo Invenietis
boasson@quaerendo.com

Construction: Terry Bollinger, Mitre Corp.
terry@mitre.org

Requirements: Christof Ebert, Alcatel Telecom
christof.ebert@alcatel.be

Management: Ann Miller, University of Missouri, Rolla
millera@ece.umr.edu

Quality: Jeffrey Voas, Cigital
voas@cigital.com

Experience Reports: Wolfgang Strigel,
Software Productivity Center; strigel@spc.ca

EDITORIAL BOARD

Don Bagert, Texas Tech University
Richard Fairley, Oregon Graduate Institute

Martin Fowler, ThoughtWorks
Robert Glass, Computing Trends

Natalia Juristo, Universidad Politécnica de Madrid
Warren Keuffel, independent consultant
Brian Lawrence, Coyote Valley Software

Karen Mackey, Cisco Systems
Stephen Mellor, Project Technology

Deependra Moitra, Lucent Technologies, India
Don Reifer, Reifer Consultants

Suzanne Robertson, Altantic Systems Guild
Wolfgang Strigel, Software Productivity Center

Karl Wiegers, Process Impact

INDUSTRY ADVISORY BOARD

Robert Cochran, Catalyst Software (chair)
Annie Kuntzmann-Combelles, Q-Labs

Enrique Draier, PSINet
Eric Horvitz, Microsoft Research

David Hsiao, Cisco Systems
Takaya Ishida, Mitsubishi Electric Corp.

Dehua Ju, ASTI Shanghai
Donna Kasperson, Science Applications International

Pavle Knaflic, Hermes SoftLab
Günter Koch, Austrian Research Centers

Wojtek Kozaczynski, Rational Software Corp.
Tomoo Matsubara, Matsubara Consulting

Masao Matsumoto, Univ. of Tsukuba
Dorothy McKinney, Lockheed Martin Space Systems

Nancy Mead, Software Engineering Institute
Susan Mickel, AgileTV

Dave Moore, Vulcan Northwest
Melissa Murphy, Sandia National Laboratories

Kiyoh Nakamura, Fujitsu
Grant Rule, Software Measurement Services

Girish Seshagiri, Advanced Information Services
Chandra Shekaran, Microsoft

Martyn Thomas, Praxis
Rob Thomsett, The Thomsett Company

John Vu, The Boeing Company
Simon Wright, Integrated Chipware

Tsuneo Yamaura, Hitachi Software Engineering

MAGAZINE OPERATIONS COMMITTEE

Sorel Reisman (chair), James H. Aylor, Jean Bacon,
Thomas J. Bergin, Wushow Chou, William I.

Grosky, Steve McConnell, Nigel Shadbolt, Ken
Sakamura, Munindar P. Singh, Francis Sullivan,

James J. Thomas, Yervant Zorian

PUBLICATIONS BOARD

Rangachar Kasturi (chair), Angela Burgess (pub-
lisher), Jake Aggarwal, Laxmi Bhuyan, Mark Chris-

tensen, Lori Clarke, Mike T. Liu, Sorel Reisman,
Gabriella Sannitti di Baja, Sallie Sheppard, Mike

Williams, Zhiwei Xu

September/October ’01:
Benchmarking Software Organizations

November/December ’01:
Avoiding Defects Faster

January/February ’02:
Building Systems Securely from
the Ground Up

March/April ’02:
Building Internet Software

May/June ’02:
Knowledge Management in
Software Engineering

U p c o m i n g T o p i c s

