
best practices

takes
Prospecting for SOME OF THE WORST PRACTICES IN THE

programmer’s software industry have been used so often, by so

gold. many people, to produce such predictably bad
results, that they should be labeled “classic mistakes.”

Most classic mistakes have seductive appeal,
which is part of the reason they’ve been made
often enough to be considered classics. Need to

‘ect that’s behind schedule? Add more
an earlier delivery date? Just set a

ve schedule. Should you keep a key
ho’s aggravating the rest of the
eject is too important to let him go.

my nominations for soft-

ation. Study after study has
robably has a larger impact

ty than any other factor
Engineering Economics,

qnsidering that, you would
v$ivation program to occu-

ortance on every soft-
the case. Motivation is
.quantify, and it often
tors that might be less

e easier to measure. Every organi-
s that motivation is important, but

a few organizations do anything about it.
practices are penny-

wise and pound-foolish, trading huge losses in
motivation and morale for minor methodology
improvements or dubious budget savings.

Editor:
Steve McConnell

Construx Software Builders
PO Box 6922

Bellevue, WA 98008
stevemcc@construx.com

Uncontrolled problem employees. Failure to deal
with rogue programmers has been a well-under-
stood mistake at least since Gerald Weinberg pub-
lished Psychology of Computer Programming in 1971
(Van Nostrand Reinhold). But a study by Carl E.
Larson and Frank MJ. LaFasto found that failure
to deal with a problem employee is still the most
common complaint that team members have
about their leaders (Teamwork: what Must Go
Right; What Can Go Strong, Sage, 1989). This
study was not specifically about software, but I

think software teams are just as susceptible to this
problem. At best, failure to deal with problem
employees undermines the morale and motivation
of the rest of the team. At worst, it increases
turnover among the good developers and damages
product quality and productivity.

Noisy, crowded offices. Need to save money? A
common economy is to cram developers into low-
budget office space. Most developers rate their

working conditions as unsatisfactory and report
that they are neither sufficiently quiet nor sufft-
ciently private. Workers who occupy noisy,
crowded work bays or cubicles tend to perform
significantly worse than workers who occupy
quiet, private offices (Tom DeMarco and
Timothy Lister, Peopleware, Dorset House, 1987).

Abandoning planning under pressure. Project teams
make plans and then routinely abandon them (witl-
out replanning) when they run into schedule trouble
(Watts Humphrey, Managing the Software Process,
Addison-Wesley, 1989). Without a coherent plan,
projects tend to fall into a chaotic code-and-fix
mode, which is probably the least effective develop-
ment approach for all but the smallest projects.

Shortchanging upstream activities. Project teams that
are in a hurry try to cut nonessential activities, and
because requirements analysis, architecture, and
design don’t directly produce code, they are easy
targets for the schedule ax. On one disaster project
that I took over, I asked to see the design. The
team leader told me, “We didn’t have time to do a

Continued on p. 111

Copyright 0 1996 Steven C. McConnell. All Rights Reserved. SEPTEMBER 1996

best practices

Continued fionz p. 112

design.” Also known as “jumping into cod-
ing,” the results of this classic mistake are
all too predictable. Time is wasted imple-
menting hacks, which are later thrown out
and redeveloped with more care. Project
teams that skimp on upstream activities
typically must do the same work down-
stream at anywhere from 10 to 100 times
the cost of doing it earlier (Barry W.
Boehm and Philip N. Papaccio, “Under-
standing and Controlling Software Costs,”
IEEE Transactions on Sojiware Engineering,
Oct. 1988). “If you can’t find time to do
the job right in the first place,” the old
chestnut goes, “how will you find time to
do it again later?”

Shortchanging quality assurance to improve
development speed. On a rush project, team
members often cut corners by eliminat-
ing reviews, test planning, and all but the
most perfunctory testing. This is a partic-
ularly unfortunate decision. Short-cut-
ting a day of QA activity early in the pro-
ject is likely to add 3 to 10 days of unnec-
essary activity downstream (Capers Jones,
Assessment and Control of Software Risks,
Yourdon Press, 1994).

Lack of feature-creep control. The average
project experiences about a 25 percent
change in requirements from the
“requirements complete” stage to first
release (Jones 1994). This produces at
least a 25 percent addition to the soft-
ware schedule-and probably much
more, because of the multiplicatively
higher costs associated with doing work
downstream. Many projects lack formal
change-control processes that could
help limit changes to those that are
absolutely necessary.

Silver-bullet syndrome. The silver-bullet
syndrome occurs whenever managers or
developers expect any single new tool or
methodology to solve all their productiv-
ity problems. Silver-bullet tools and
methodologies damage projects in two
ways. First, the new tools or methodolo-
gies virtually never deliver improvements
as dramatic as promised. Project-wide
productivity improvements of more than
25 percent from first use of a new tool or

IEEE SOFTWARE

methodology are virtually unheard of.
Second, belief in silver bullets leads to
serialization of improvements that could
be made in parallel. Because managers or
developers put all their faith into a single
silver bullet, they try promising new
tools and methods one at a time rather
than two or more at a time, which slows
the adoption of potentially beneficial
new tools and methods other than the
silver bullet. The bottom line is that
organizations that succumb to silver-bul-
let syndrome tend not to improve their
productivity at all; indeed, they often go
backward (Jones 1994).

Wasting time in the “fuzzy front end.” This
is the time before the project starts, the
time normally spent in the approval and
budgeting process. It’s easier, cheaper,
and less risky to shave a few weeks or
months off the fuzzy front end than it is
to compress a development schedule by
the same amount. But it’s not uncommon
for a project to spend months or year:; on
these preliminaries and then to burst out
of the starting gates with an aggressive,
often unattainable schedule.

insufficient user input. A 1994 Standish
Group survey, “Charting the Seas of
Information Technology,” found that the
primary reason IT projects succeed is
because of end-user involvement. Projects
without early end-user involvement
increase the risk of misunderstood project
requirements and are especially vulnerable
to time-consuming requirements creep.

Overly aggressive schedules. The same sur-
vey found that the average IT project took
about 220 percent of its planned schediule.
Scheduling errors of this magnitude set up
a project for failure. Plans based on esti-
mates that are wrong by more than 50
percent cannot be effective. The most
serious consequence is probably that, if
upstream activities are abbreviated pro-
portionately to the condensed schedule
(more than 50 percent), the average pro-
ject might be doing as much as half of its
upstream work downstream, at 10 to 100
times its nominal cost. Overly aggressive
schedules also put excessive pressure on

developers, which ultimately hurts both
morale and productivity.

Adding developers to a late project.
Perhaps the most classic of the classic
mistakes is adding developers to a project
that’s behind schedule. There are excep-
tions to the rule, but generally when a

project is behind schedule, new people
subtract more productivity from existing
staff than they add through their own
work. Fred Brooks likened adding people
to a late project to pouring gasoline on a
fire (The Mythical Man-Month, Addison
Wesley, 1975).

CALL TO ACTION. This list of mistakes is
hardly exhaustive. I have simply identified
the ones I have seen most often. Your list
might be different.

Regardless of the exact contents,
keep some list of classic mistakes in
mind. Conduct project postmortems to
identify the classic mistakes particular to
your organization. Exchange war stories
with colleagues in other organizations to
learn about the mistakes they’ve made.
Create checklists of mistakes for use in
your project planning. Post lists of clas-
sic mistakes on your group’s bulletin
board for use in project monitoring.
Appoint a “classic mistakes watchdog” to
sound an alarm if your project begins to
succumb to a classic mistake.

The classic mistakes’ seductive allure
brings them into play again and again,
but we as an industry have gained enough
experience to recognize them for what
they are. Now that we recognize them,
we just need to be hard-headed enough
to resist their appeal. +

