
1 2 0 I E E E S o f t w a r e J a n u a r y – F e b r u a r y 1 9 9 8 C o p y r i g h t (c) 1 9 9 8 S t e v e n C . M c C o n n e l l . A l l R i g h t s R e s e r v e d]

The Art, Science, and
Engineering of Software
Development
When interviewing candidates for programming jobs,
one of my favorite interview questions is,“How would
you characterize your approach to software develop-
ment?” I give them examples such as carpenter, fire
fighter, architect, artist, author, explorer, scientist, and
archeologist, and I invite them to come up with their
own answers. Some candidates try to second-guess
what I want to hear;they usually tell me they see them-
selves as “scientists.” Hot-shot coders tell me they see
themselves as commandos or SWAT-team members.
My favorite answer came from a candidate who said,
“During software design,I’m an architect.While I’m de-
signing the user interface, I’m an artist. During con-
struction, I’m a craftsman. And during unit testing, I’m
one mean son of a bitch!”

I like to pose this question because it gets at a fun-
damental issue in our field: What is the best way to
think of software development? Is it science? Is it art?
Is it craft? Is it something else entirely?

TWO CULTURES OR AN IDEAL UNMET?
We have a long tradition in the software field of de-

bating whether computer programming is art or sci-
ence. Thirty years ago, Donald Knuth began writing a
seven-volume series,The Art of Computer Programming.
The first three volumes stand at 2,200 pages,suggest-
ing the full seven might amount to more than 5,000
pages.(If that’s what the art of computer programming
looks like, I’m not sure I want to see the science!)

People who advocate programming as art point to
the aesthetic aspects of software development and
argue that science does not allow for such inspiration
and creative freedom. People who advocate pro-
gramming as science point to many programs’ high
error rates and argue that such low reliability is intol-

erable—creative freedom be damned. In my view,
both these views are incomplete and both ask the
wrong question. Software development is art. It is sci-
ence. It is craft, fire fighting, archeology, and a host of
other activities. It is as many different things as there
are different people programming. But the proper
question is not “What is software development?”
but rather “What should software development be?”
In my opinion, the answer to that question is clear:
Software development should be engineering. Is it?
No. Should it be? Unquestionably, yes.

BEYOND THE BUZZWORD
The dictionary definition of engineering is the ap-

plication of scientific and mathematical principles to-
ward practical ends.That is what most of us try to do,
isn’t it? We apply scientifically developed and mathe-
matically defined algorithms, functional design meth-
ods,quality-assurance practices, and other practices to

develop software products and services.
As David Parnas points out, in other
technical fields the engineering profes-
sions were invented and given legal
standing so that customers could know
who was qualified to build technical
products (“Software Engineering: An

Unconsummated Marriage,”Software Engineering Notes,
Nov.1997).Software customers deserve no less.

Some people object to the idea that software de-
velopment should be treated as engineering because
they think “software engineering” is just a buzzword;
they argue that no core body of knowledge can be
identified as “software engineering.”Thirty years ago
when the first NATO conference on software engi-
neering was held, this statement was undoubtedly
true.The first paper on structured design had not yet
been published. Neither had the first papers on in-
spections,measurement-based estimation,or the high
performance variability among individual program

B e s t P r a c t i c e s

Steve McConnell

E
D

IT
O

R
:

St
ev

e
M

cC
o

n
n

el
l•

C
o

n
st

ru
x

So
ft

w
ar

e
B

u
ild

er
s

• s
te

ve
m

cc
@

co
n

st
ru

x.
co

m

Software development is art. It is science.
It is craft, fire fighting, archeology, and
a host of other activities.

Continued on page 118

..

mers.Ten years would pass before the publication of the
first books on structured design,software system spec-
ification, and metrics. Online systems were controver-
sial, and the first readily available GUI interfaces were
still more than a decade away. Whatever core body of
knowledge could have been defined at that time would
have been at least 50 percent obsolete within 10 years.

Today,“software engineering” is still thrown around
as a buzzword more often than not.That’s unfortunate.
But the fact that the term is abused does not mean it
has no legitimate meaning. Software development has
come a long way in 30 years. We still do not have an
absolutely stable core body of knowledge,and knowl-
edge related to specific technologies will never be very
stable,but we do have a body of knowledge that is sta-
ble enough to call software engineering.That core in-
cludes practices used in requirements development,
functional design,code construction,integration,pro-
ject estimation, cost–benefit trade-off analysis, and
quality assurance of all the rest.

Many core elements have not yet been brought
together in practically oriented textbooks or courses,
and in that sense our body of knowledge is still frag-
mented and under construction. But the basic

knowledge about how to perform each of these
practices is available—in journal articles, conference
papers, and seminars. The pioneers of software en-
gineering have already blazed the trails and sur-
veyed the land. Now the software engineering set-
tlers need to get to work, turning the trails into roads
and developing the rest of the education and ac-
creditation infrastructure.

ENGINEERING TRADE-OFFS
Some people think that treating software devel-

opment as engineering means we’ll all have to use for-
mal methods, which both common sense and experi-
ence tell us are overkill for many projects. Others say
that commercial software is too dependent on chang-
ing market conditions to permit careful, time-con-
suming engineering.These objections are based upon
narrow, and I think, mistaken, ideas of engineering.
Engineering is the application of scientific principles
toward practical ends. If the engineering isn’t practi-
cal, it isn’t good engineering.

Treating software as engineering makes clearer
the idea that different development goals are appro-
priate for different projects. When a building is de-
signed,the construction materials must suit the build-
ing’s purpose. I can build a large equipment shed to
store farming vehicles from thin, uninsulated sheet

metal. I wouldn’t build a house the same way.But even
though the house is sturdier,warmer,and likely to last
longer,we don’t refer to the shed as having lower qual-
ity than the house. The shed has been designed ap-
propriately for its intended purpose. If it had been
built as robustly as a house, we might even criticize it
for being “overengineered”—a judgment that the de-
signers wasted resources in building it.

Similarly,each software program must strike a bal-
ance between functionality and reliability appropri-
ate to its purpose. We don’t want to pay $5,000 for a
word processor, nor do we want one that crashes
every 15 minutes. Thus, the shrink-wrap software in-
dustry is constantly optimizing an equation that in-
cludes the variables of time to market,reliability, func-
tionality, and cost.

In most cases, these optimizations are business
decisions rather than moral decisions.There is no in-
herent “right”or “wrong”quality level for software in-
dependent of the specific software package being
created. The “right” materials depend on a specific
building’s purpose; the right reliability depends on
the specific software’s purpose. When safety is in-
volved, the optimizations become moral decisions,
but such calculations are not unique to software.
Drug manufacturers weigh the benefits of their drugs
against their side effects. Bridge designers and aero-
nautical engineers consider both safety and cost.
Whether the calculations involve functionality, time,
money, or human safety, striking the right balance in
a deliberate, informed way is properly the domain of
engineering—applying scientific principles toward
practical ends. Many current software projects strike
that balance poorly, or with little awareness that
trade-offs even exist. An engineering approach can
only help them.

ROLES IN SOFTWARE ENGINEERING
Another objection is that treating software de-

velopment as engineering will take all the fun out
of it. Software development in many quarters is a
fast-and-loose craft, and many fast-and-loose
craftsmen are making fantastic incomes without
knowing much about effective development prac-
tices. Only a prophet could know how long the
public will tolerate computer programmers who
make doctors’ salaries without comparable train-
ing and education, but I predict that one fallout of
Year 2000 problems will be public insistence on
regulating software developers.

All other engineering fields are self-accredited and
self-regulated; software developers will either volun-
tarily swallow the medicine of software as engineer-
ing or we will have it forced down our throats. I know
which way I prefer to take my medicine.

As roles in the field settle out, I won’t be surprised
to see greater coordination between software engi-
neering and other engineering disciplines.Some stu-

1 1 8 I E E E S o f t w a r e J a n u a r y – F e b r u a r y 1 9 9 8]

Each software program must strike
a balance between functionality and
reliability appropriate to its purpose.

Continued from
page 120

B e s t P r a c t i c e s

.

J a n u a r y – F e b r u a r y 1 9 9 8 I E E E S o f t w a r e 1 1 9]

dents will major in electrical engineering or aero-
nautical engineering with an emphasis in software.
They will lead the software parts of their engineer-
ing projects, and their classmates who choose pure
electrical engineering or aeronautical engineering
will not.Some students will attain degrees in general
software engineering.

A major distinction between software engineering
and other kinds of engineering is that software is so
labor intensive that a significant amount of engineer-
ing energy must be focused on project goals in addi-
tion to product goals—on the means to the ends as
well as the ends themselves.Other kinds of engineers
choose components to be used in the structures they
build.Software engineers choose both the tools used
to build the software and the components to be used
within the software itself.

The fact that some software must be produced by
trained, accredited engineers doesn’t imply the same
for all software. I can fix a broken railing on my stairs
without a civil engineering degree. I can mix a gin and
tonic without a chemical engineering degree. But can
I build a second story on my house? No. My local gov-

ernment will require me to have an engineer sign the
building plans. We should eventually see a similar
stratification of software jobs into amateurs, skilled
craftsmen, and engineers.

THE RIGHT QUESTIONS
Once we stop asking the trick question “Is software

development engineering?” and start asking the real
question “Should software development be engineer-
ing?” we can start answering really important ques-
tions: What is software engineering’s core body of
knowledge? How should software engineers be
trained? How should software engineers be certified?
And, perhaps the hardest to answer, How long will it
take for all this to happen? ❖

The fact that some software must be
produced by trained, accredited engineers
doesn’t imply the same for all software.

Legacy computer systems are essential to most organi-
zations’ survival. Without them, we’d have to make huge
investments in new technology and risk the new systems fail-
ing to deliver what’s needed. We must maintain functionality,
correct defects, upgrade software, and sometimes even
change the underlying enterprise infrastructure and
architecture to keep up with changing conditions.

The Software focus could cover any of these legacy topics:
• How to keep your system running as the world around it

changes
• Keep it or throw it away? Change it or replace it?
• Re-engineering for Web access
• Managing legacy projects
• How systems become legacy: What factors make

some systems “irreplaceable”?
• Measuring processes and products
• Real stories about rebuilding/migrating in telecom,networks,

space systems, industrial automation, embedded systems, ...
• Effects of the Y2K problem on legacy systems
• And much more...

Length: 5400 words maximum; tables and figures count as 200
words each.This length limit will be strictly enforced.The
papers we deem within the scope of the theme will be peer-
reviewed and are subject to editing for magazine style, clarity,
and space.

Manuscripts due: 9 February 98
Notification of acceptance: 15 March 98
Revisions due: 10 April 98

For more information,contact the guest editors:
Twyla B. Courtot Norman F. Schneidewind

AT&T Solutions Naval Postgraduate School

twyla@att.com schneidewind@nps.navy.mil

For complete author guidelines, contact IEEE Software at
software@computer.org.

To submit an article,send two electronic versions (one postscript
file and one formatted in MSWord, WordPerfect, ASCII, RTF, TeX,
or LaTeX) and two double-spaced complete copies to:

Alan Davis, Editor-in-Chief
IEEE Software
c/o 10662 Los Vaqueros Circle, P.O. Box 3014
Los Alamitos, CA 90720-1314
Pubs Office: (714) 821-8380 Fax: (714) 821-4010
software@computer.org
http://computer.org/software

July 1998 Focus: Managing and Maintaining Legacy Systems
Call for Articles and Reviewers

.

