best practices

Annualized
Software Delivery

Prospecting for
programmer’s

gold.

Editor:

Steve McConnell
Construx Software Builders
PO Box 6922

Bellevue, WA 98008
stevemec@construx.com

104

PROJECTS IN THE COMMERCIAL SOFT-
ware industry are often characterized by frenzied
attempts to leapfrog the competition. Companies
try to deliver innovative products quickly, and in
their ill-fated attempts to serve two masters, both
development time and product innovation suffer.
A history of the GigaCorp company, a composite
of companies I have worked with, describes the
current situation in more detail.

GigaCorp produced a successful widget format-
ter called GigaMat 1.0. It was well received in the
marketplace and offered significantly more func-
tionality than its main competitor, MegaMat. A
few months after GigaMat was released, Mega-
Corp responded by releasing a new version of
MegaMat, which provided incrementally more
functionality than GigaMat 1.0.

Because of the competitive situation,
GigaCorp then set a target of releasing a minor
upgrade, GigaMat 1.2, within three months. The
project planners recognized this was an ambitious
schedule but felt that to remain competitive they
had no other choice. As a result of the short
schedule, the GigaMat 1.2 team rushed through
the early stages of analysis and design—doing lit-
tle requirements analysis and only a sketchy
design.

In the later stages of the project, the team
found that some of its assumptions about the prod-
uct’s requirements were invalid, and it then spent a
great deal of time correcting defects that it had
inserted during the requirements and design stages.

Although it developed an initial implementa-
tion of the intended functionality within the
desired three-month time frame, the quality of the
product was poor enough that it could not be
released to the public. The GigaMat 1.2 project
then spent months in an extended integration,
test, and defect-correction cycle, and finally
released the product after 12 months.

In later versions of GigaMat, the code base
became extremely brittle. Even minor changes
became time consuming and error prone. Time
that might have been spent developing innova-
tive new capabilities was instead spent correcting
the problems arising from incomplete design,

Copyright (c) 1997 Steven C. McConnell. All Rights Reserved.

steve mcconnell

rushed implementation, and short-term plan-
ning decisions that had been made in earlier
releases.

The pattern at GigaCorp isn’t unusual.
Companies create products under intense sched-
ule pressure, which produces low-quality design
and code bases. A company typically knows that its
product is built on a shaky foundation, but
because of pressure to release timely upgrades, it
continues to extend its low-quality code base in
hopes of delivering the next version as quickly as
possible. As problems mount, the company real-
izes that the notion of using a poor-quality code
base to support quick development is a cruel joke;
it severely hobbles the company’s ability to extend
its product and ultimately delays delivery.

A TWO-PART PLAN. Annualized releases provide a
way to escape from pressure-cooker upgrade
cycles and low-quality code bases. Suppose you
work for the GigaCorp company and that you
released the first version of your GigaMat widget
formatter in 1996. With annualized delivery, you
can strategically divide your future development
efforts into two parts, which provide for incre-
mental releases in 1997, 1998, and 1999 and for a
completely redesigned product in 2000.

Part 1: Incremental enhancement. One team main-
tains and enhances the product thread that started
with GigaMat 1996 and that will continue through
1999. Its task is to deliver minor, incremental
improvements that can be readily supported by the
existing code base.

This team is committed to release incremental
updates approximately once a year. Functionality
is developed in increments, perhaps using daily
builds to drive to a potentially shippable state once
every two months or so. Keeping the product
close to a shippable state at all times increases the
likelihood of actually shipping the product close to
its target delivery date.

Part 2: New development. While the first team

Continued on page 103

JANUARY 1997



best practices
Continued from page 104

delivers incremental improvements, a
second team develops a completely new
GigaMat 2000 that sheds much of the
baggage associated with GigaMat 1996.
This team’s task is to make wholesale
conceptual improvements in both the
product and its underlying design and
implementation.

Separating the new development
effort from the enhancement effort lets
this team focus on innovating without
being preoccupied with short-term deliv-
ery pressures. Because of the longer time
frame, it can treat the development of a
new GigaMat 2000 as a truly innovative
exercise in redefining the state of the art
in its product area.

More effective development. For all but
the richest companies, the major objec-
tion to this strategy will be that it is pro-
hibitively expensive to conduct two sepa-
rate development threads. But this strate-
gy is much less expensive than it might at
first appear, because separating develop-
ment into two branches allows each
branch to operate more efficiently.

For new products, the current crash-
development style leads to poor designs,
poor implementation, poor quality,
excessive rework, developer burnout,
high turnover—in short, to significant
inefficiencies. Development takes place
in a pressure cooker, hardly the ideal
environment for creating innovative
products. By stretching out the develop-
ment cycle, product redesign can be con-
ducted at a more leisurely, contemplative
pace with a smaller staff. The smaller
staff can operate more efficiently and
innovatively, and product integrity is
likely to benefit.

Having an independent product
redesign underway reduces the enhance-
ment team’s need to leapfrog the compe-
tition with each release. Cramming major
new functionality into an incremental
release increases the risk of late delivery.
When incremental enhancements are
separated from new development, you
can instead plan an enhancement release
as a strategic, low-risk effort to provide
timely, incremental improvements to
your customers.

IEEE SOFTWARE

More proactive improvements. Currently,
most companies will create a new code
base only after their old code base has
become so brittle that it is virtually impos-
sible to maintain. This puts a company in
a reactive rather than proactive posture
and virtually guarantees that the last devel-
opment cycle using the old code base will
be characterized by enormous struggles to
make even the tiniest improvements in the
outdated design and code.

The annualized delivery strategy
accounts for the reality that most code
bases deteriorate under maintenance—
especially if major portions of the code
base were originally developed under

three to five years.

intense schedule pressure. The strategy
puts a company on track to renew the
code base for a strategic product every
few years, proactively, before the old
code base becomes unmaintainable and
sabotages new development efforts.

More regular product releases. From a
software purchaser’s point of view, soft-
ware products are currently delivered at
irregular intervals, perhaps as infre-
quently as every two or three years.
Although software vendors continue to
make more ambitious schedule promises,
the commercial software industry’s track
record does not instill much confidence.
Because of uncertainty in product-
release cycles, companies that use soft-
ware don’t know whether to budget for a
product upgrade this year, next year, or
the year after that. Software vendors thus
fail to provide the support needed for
mid- to long-range planning.

With annualized releases, the vendor’s
customers can decide once a year whether
to upgrade. Annualized releases reduce the
planning risks that now arise from compa-
nies that announce release dates they have
no reasonable chance of meeting.

Less baggage for established companies.
One nagging problem in the commercial
software industry has been how a compa-
ny with a large installed base can enhance
its products with the same agility that a
startup company can. The obligation to
support an existing customer base can
become a ball and chain that restricts an
established company’s ability to innovate.

Annualized product releases allow an
established company to recapture some
of the startup’s agility. An established
company can announce a policy like this:
“We guarantee that we will support the
1996 model of GigaMat in enhancement
releases through the year 1999. After
that, we will introduce a redesigned
GigaMat 2000, which will not support an
upgrade path from previous versions.”
Each customer will have to decide whether
to upgrade to GigaMat 2000 or continue
using GigaMat 1999. This approach shifts
part of the responsibility for staying with
an outdated product back onto cus-
tomers’ shoulders, and since three to five
years is a lifetime in the computer indus-
try, limiting upgrade support to that time
frame seems inherently reasonable.

BACK TO THE PROGRAM. Segments of the
commercial software industry already use
forms of annualized product releases.
Tax programs such as Turbo Tax have,
of necessity, been on annualized release
cycles since their inception. Multimedia
products such as Encarta joined the
annualized-release bandwagon later.
Time will tell whether product names
such as “Windows 95” and “Office 97”
are driven by an annual-release strategy.
The broader commercial software
industry needs to recognize that significant
upgrades of major products typically take
an amount of time measured in years
rather than weeks or months. If a company
can step back from the current frenzy of
new-product development and invest the
time needed to develop a truly innovative
product, it should be able to deliver prod-
ucts that are so well designed and imple-
mented that they can remain popular and
competitive for three to five years—which
will provide enough time to complete the
next innovative design cycle. O

103



