
bes t p r a c t i c es s teve mcconne l l

Achieving Leaner
Software

SOFTWARE DEVELOPERS AND MANAGERS
claim that they understand the benefits of keeping their
software simple, but industry reports indicate other-
wise. Developers, managers, marketers, and end users
continue to stuff so many features into already bloated
products that one software industry elder has publicly
pleaded for leaner software (Niklaus Wirth, “A Plea
for Lean Software,” Computer, February 1995).

Whether its pudginess originates externally, from
excess features, or internally, from overly complex
designs and implementations, pudgy software takes
more time to design, code, and debug than simpler
software. In “Less Is More” (Software Development,
October 1997), I noted that cost per line of code and
defect rate per line of code both increase as software
size increases. Larger software requires larger teams
and all the inefficiencies they entail. These days,
when “short time to market” is a rallying cry for al-
most all software projects, project teams should be
looking for ways to make their software leaner, less
complex, and easier to build and deliver.

Several practices can help keep porky software
from bingeing on excess features.

SOFTWARE REQUIREMENTS DIETING. Early in the pro-
ject, the most effective part of a lean software diet is
a big helping of requirements scrubbing. Take your
carving knife in hand and go over the software re-
quirements specification with the following aims:

♦ trim all features that are not absolutely neces-
sary, and

♦ simplify all features that are more complicated
than absolutely necessary.

Entirely removing a feature is a powerful way to
save time because you remove every ounce of effort
associated with that feature: specification, design,
testing, documentation—everything. You also elim-
inate all the possible interactions between that fea-
ture and the software’s other features, which reduces
effort even further. The earlier in the project you re-
move a feature, the more time you save.

The ultimate success of requirements scrubbing
depends on follow-through. If you begin with 100
features and sweat the software down to 70 features,
you might well be able to complete the project with

70 percent of the original effort. But crash fitness
programs are risky. If you trim the list down to 70
features only to reinstate the omitted features later,
the project will likely cost more than if you had re-

tained the entire 100 features the whole time.
Features added late in the project increase software
complexity because they lack the early features’ built-
in compatibility with the rest of the software. Late
features must be integrated with the rest of the soft-
ware as special cases, which contributes enormously
to complexity and software bulkiness. According to
Barry Boehm and Philip Papaccio, such features typ-
ically cost from 50 to 200 times as much to imple-
ment as they would have cost if added early in the
project (“Understanding and Controlling Software
Costs,” IEEE Transactions on Software Engineering,
October 1988).

SOFTWARE FITNESS PROGRAM. Keeping software from
getting chubby in the middle of the project is difficult
because pressure to add more features originates from
all project stakeholders. Customers want more fea-
tures because they want their needs to be addressed
specifically. Marketers want more features because
they perceive the market to be feature-driven; they
want their software to stack up well against the com-
petition. Developers want more features because each
developer has areas of special interest and will be sure
to do whatever work is needed to satisfy those inter-
ests, even if doing that increases software complexity.

These stakeholders will try to work their favorite
features into the software even after the formal

Entirely removing a
feature saves time.
The earlier in a project
you remove a feature,
the more time you save.

1 2 8 Copy r i g h t (c) 1997 S t e ve n C . Mc C o n n e l l . A l l R i g h t s R e se r v e d NOVEMBER/DECEMBER 1997

Prospecting for
programmer’s

gold.

Editor:
Steve McConnell
Construx Software Builders

PO Box 6922
Bellevue, WA 98008

stevemcc@construx.com Continued on page 127

.

requirements specification activity is com-
plete. Users sometimes try to end-run the
requirements process and coax individual
developers into implementing their favorite
features. Marketers build a marketing case
and insist that their favorite features be
added partway through the project.
Developers implement unrequired features
on their own time or when the boss is look-
ing the other way.

Even the smallest features pack more
calories than you might think. Each small
addition can have ripple effects on the pro-
ject’s design, code, test cases, documenta-
tion, customer support, training, configu-
ration management, personnel assignments,
management communications, staff com-
munications, planning, tracking, and ulti-
mately on the project’s schedule, budget,
and quality.

Several studies have found that feature
creep is the most common or one of the
most common sources of cost and schedule
overruns (J. Vosburgh et al., “Productivity
Factors and Programming Environments,”
Proceedings of the 7th International Conference
on Software Engineering, IEEE Computer
Society, 1984; Albert L. Lederer and Jayesh
Prasad, “Nine Management Guidelines for
Better Cost Estimating,” Communications of
the ACM, February 1992; Capers Jones,

Assessment and Control of Software Risks,
Yourdon Press, 1994; The Standish Group,
Charting the Seas of Information Technology,
1994). Feature creep is a major factor in
project cancellations; changes resulting
from feature creep can even destabilize a
product—by adding complexity—to such
a degree that it can’t be finished at all.

Change board. Midproject feature addi-
tions are expensive, but putting the soft-
ware on a starvation diet by stopping
changes altogether is rarely in the project’s

best interest. Projects must remain flexible
enough to add the functionality that cus-
tomers or the marketplace declare to be ab-
solutely essential. The question for most
projects is how to limit feature additions to
those that are absolutely essential.

The typical means of limiting changes
is to use a software change board, which
acts as a central clearing house for changes.
It ensures that the costs and benefits of each
proposed change are considered before the
change is accepted, that all important view-
points are considered, and that all con-
cerned parties are notified of whether each
proposed change is accepted or rejected.

A change board typically consists of rep-
resentatives from each of the project’s major
concerned parties, including project man-
agement, marketing, development, quality
assurance, documentation, and user support.

Multiversion planning. To effectively sup-
port lean software, the change board must
say no to new features more often than it
says yes. One great help in saying no to
adding features now is being able to say yes
to adding new features to a future version.
Consider maintaining a list of features that
will be implemented in the next version.
Adding a requested feature to the list em-
phasizes that you’re listening to people’s
concerns and plan to address them at the ap-
propriate time. This approach works espe-
cially well if you create a multirelease plan
that maps out a multiyear, multiversion soft-
ware strategy. Seeing the plan helps people
understand that the feature they want is
more appropriate for a later release and that
it won’t be delayed indefinitely.

Short release cycles. Planning to deliver
software often is one key to keeping each
release from bulking up. For users and cus-
tomers to accept the multiversion approach,
they must have some assurance that there
will in fact be a version after the current one.
If you don’t think you’ll eat again until next
week, you’ll eat more than if you know your
next meal is only a few hours away. If users
fear that the current version will be the last
version they ever see, they’ll try hard to put
all their pet features into it. Witnessing a se-
ries of short release cycles helps build users’
confidence that their favorite new feature

will make it into the software eventually, just
not into the current release.

User interface prototyping. While change
boards are probably the most common means
of controlling midproject feature bloat, pro-
totyping is one of the most effective.

Prototyping tends to lead to smaller sys-
tems. My wife doesn’t necessarily know
what I want for dinner, and the features that
developers think users want are not always
the same features users themselves would
order from the software menu. Conversely,
without prototyping, users sometimes in-
sist on features that look good on paper but
work poorly in the live software. User in-
terface prototyping can cull those features
early in the project, which makes it easier
to keep both the feature set and the budget
fit and trim. One survey of projects that
used prototyping found that it reduced de-
velopment effort (and, by implication, soft-
ware size) by 45 to 80 percent (V. Scott
Gordon and James M. Bieman, “Rapid
Prototyping: Lessons Learned,” IEEE
Software, January 1995).

SOFTWARE MIRACLE DIETS. None of these
practices is a software miracle diet, and
none of them will keep a slothful software
project from piling on the pounds. But
when you combine requirements scrub-
bing, change board, multiversion plan-
ning, and user interface prototyping into a
comprehensive software fitness program,
the result can be fast delivery of svelte,
powerful software.

Keep the fat where it belongs: At pro-
ject end, use the money from your lean soft-
ware savings to treat the development team
to a well-deserved banquet. ♦

I E E E S O FT W A R E 1 2 7

bes t p ra c t i c es

To support lean
software, the
change board
must say no
to new features
more often than
it says yes.

Even the smallest
features pack
more calories
than you
might think.

Continued from page 128

.

