
b e s t p r a c t i c e s

1 4 4 C o p y r i g h t © 1 9 9 7 S t e v e n C . M c C o n n e l l . A l l R i g h t s R e s e r v e d . M A R C H / A P R I L 1 9 9 7

Prospecting for
programmer’s

gold.

Editor:
Steve McConnell
Construx Software Builders

PO Box 6922
Bellevue, WA 98008

stevemcc@construx.com

Software’s
Ten Essentials

s t e v e m c c o n n e l l

VIRTUALLY EVERY BACKPACKER, ROCK
climber, and recreational hiker in the Pacific
Northwest is familiar with the Seattle
Mountaineers’ list of the “Ten Essentials”: extra
clothing, extra food, sunglasses, knife, fire starter,
first aid kit, waterproof matches, flashlight, map,
and compass. In fact, the list is fairly universal.

The Ten Essentials are the result of years of
hard-won experience. They are intended to help
mountaineers avoid getting into trouble in the
first place, and, if that doesn’t work, to minimize
the damage. No experienced mountaineer would
go into the mountains without the Ten Essentials.

Experienced software developers have also ac-
cumulated years of hard-won experience. Our
software adventures often contain more uncharted
paths and dangerous territory than a simple hike
in the woods, and so I propose a list of Ten
Essentials for software projects.

MAP, COMPASS, AND SUPPLIES. A product specification
is a software project’s compass. Without one, you
can perform the work of Hercules and still not
produce a viable product, because your efforts
haven’t been aimed in any particular direction.
Without good direction, any individual’s work
can go astray, and people end up operating at
cross-purposes.

With today’s highly interactive systems it is
becoming increasingly difficult to capture the
essence of a product specification without con-
structing a detailed user-interface prototype. Static
paper documentation often cannot adequately
describe a product’s intended look and feel. If
the product specification is the compass, the
user interface prototype is the map that points
out the hills and valleys, graded trails, and por-
tions of the software outing that will require
special skills.

A beneficial side effect of user interface proto-
typing is that it can be an effective way of light-
ing a fire under both the customer and the devel-
opment team. Visibly working software is good
for customer and developer morale. A user inter-
face prototype isn’t working software, but it

looks like working software, and it can have al-
most the same effect.

No experienced hiker would think of going
on a long hike without sufficient food, water,
and clothing. On a software project, a realistic
schedule provides the essential planning founda-

tion for adequate staffing, adequate quality as-
surance activities, and in general the appropri-
ate level of formality in the project’s software
processes. Every fall we hear of hikers trapped
in the woods by an unexpected snowstorm.
Every spring we hear about a software product
that was supposed to ship on January 1 but
doesn’t actually ship until many months later.
Basing a software project on an unrealistic
schedule and the insufficient staffing and tech-
nical planning that result from it is tantamount
to heading into the woods in November without
a warm jacket.

PLANNING AHEAD. If a hiker gets into trouble, it’s
useful to know that a person can go for days
without food but not without water. A successful
software project establishes explicit priorities, so if
it gets into trouble management knows which
features are essential and which can be jetti-
soned. Explicit priorities help to avoid the prob-
lem of wanting all possible features with the best
quality in the shortest time with the least effort.
Setting “I want it all” priorities is equivalent to
setting no priorities at all. They provide no
guidance when the project needs to make tough
choices. Explicit priorities make the tough
choices easier.

A common theme running through the Ten
Essentials is that of hoping for the best but
preparing for the worst. You wouldn’t go hiking

Setting “I want it all”
priorities is
like setting
no priorities at all.

.

I E E E S O FT W A R E 1 4 3

if you expected to break your leg, and
you wouldn’t start a software project if
you expected it to run 300 percent over
budget. In spite of your best hopes, how-
ever, you’d be foolish to go hiking with-
out adequately preparing for the risks in-
herent in the activity. Active risk manage-
ment is also a key component of success-
ful software projects. As Tom Gilb says,
if you do not actively attack project risks,
they will actively attack you.

A quality assurance plan is the software
project’s first-aid kit. The top priority in
first aid is to avoid doing anything that
will require you to use the kit. But even
the most careful hikers sometimes get
hurt, and thus a first aid kit is essential.
Many software projects perform the
practical equivalent of leaving the first-
aid kit in the car. By the time problems
become too obvious to ignore, much of
the damage has been done: Developers
have inserted defects into the product
and not corrected them during require-
ments and design activities. All you can
do at that point is correct the defects, at
great cost, during construction and sys-
tem testing. A good quality assurance
plan will aim to detect defects early,
close to the point of insertion, and not
allow defects to infect work later in the
project.

For longer trips, hikers have to file an
itinerary. If the hikers file a three-day
itinerary but then don’t return within
three or four days, the Forest Service
sends out a search party. Successful soft-
ware projects use detailed activity lists,
comprised of tasks that last a few days
each and that are considered to be either
done or not done—not “90 percent
done.” Comparing the list of completed
activities to the list of planned activities
indicates whether a project is on time or
needs to be rescued.

MANAGING THE PIECES. Software configura-
tion management won’t keep you warm
and dry, but it will keep you from suc-
cumbing to some of the more dangerous
software project risks. At the most basic
level, software projects put source code
under automated source code manage-
ment. This prevents problems such as

developers inadvertently overwriting
each other’s work. Source code control
is typically combined with an off-site
backup plan so you’re not left in the
cold if the server containing the master
sources crashes.

The most successful projects also put
designs, requirements, and project plan-
ning materials under configuration man-
agement. When this is done, a change in
the schedule or budget requires explicit
approval and notification of the con-
cerned parties. This helps to keep sched-
ule- and budget-related decisions visible
and prevents hundreds of small changes
from quietly accumulating into large
schedule and budget overruns.

Sometimes you’ll see a hiker with a
20-year-old backpack, patched together
with so much duct tape and twine that
you can’t make out the original pack.
That’s what software systems developed
without an explicit focus on software ar-
chitecture look like. Internally, software
architecture promotes consistent design
and implementation approaches, which
in turn facilitate future corrections and
extensions. Externally, the most visible
aspect of explicit software architecture is
its support for consistent user interfaces.
Consistency is a generally desirable
characteristic that you attain almost au-
tomatically when you have good archi-
tecture and only with great difficulty
when you don’t.

One of the thorniest implementa-
tion problems is the problem of inte-

grating software components that were
not designed with integration in mind.
An explicit integration plan is therefore
the last of the Ten Essentials. With a
good integration plan such as the Daily
Build process (see this column in IEEE
Software, July 1996), you can almost
forget that integration tends to be a
troublesome issue. Without an integra-
tion plan, you can enter an extended in-
tegration/test/bug-fix cycle that ex-
poses so many defects that it can kill
the project.

OTHER ESSENTIALS. Several organizations
have published similar lists of software
project essentials. The Software Project
Manager’s Network publishes a “Project
Breathalyzer,” a 10-question test de-
signed to determine whether a project
should be “on the road.” The test is
available on the Internet from http://
www.spmn.com. The Standish Group
published a report titled “Charting the
Seas of Information Technology,”
which includes a list of the top 10 suc-
cess factors for MIS projects. The key
process areas required to advance from
level 1 to level 2 of the Software
Engineering Institute’s Capability
Maturity Model might also be consid-
ered “essentials.” You can read about
those in Capability Maturity Model for
Software, Version 1.1 by Mark C. Paulk
and colleagues, which is downloadable
from the SEI’s Web site at http://
www.sei.cmu.edu.

SOFTWARE’S TEN ESSENTIALS

1. A product specification
2. A detailed user interface prototype
3. A realistic schedule
4. Explicit priorities
5. Active risk management
6. A quality assurance plan
7. Detailed activity lists
8. Software configuration management
9. Software architecture

10. An integration plan

◆

.

